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I. Introduction

This final report summarizes the work performed under the AFOSR grant
number AFOSR-89-0072, originally entitled "Equilibria, Lattices, and Chaotic
Dynamics of Point Vortices". The aim of the proposed research effort involved
theoretical work, both analytic and numerical, on a number of different
problems which were all loosely tied together as involving some aspect of vortex
systems, and their relation to chaos in fluid flows. Significant results were
obtained during this funding period in several major topics. The first topic
which was investigated was a continuation of the authors previous work on
vortex lattices. Resuls consisted of the refinement of the analytic expression for
the lattice summation of an infinite lattice of point vortices, and use of this
expression to calculate the allowed lattice structures of the two-component
triangular lattice. It was also shown how these expressions can be used to
calculate the bulk physical properties of vortex lattices, by calculating the energy
of slip displacement for the triangular lattice.

A second major topic which was researched during this period was the
investigation of chaotic motion in fluid flows due to vortex dynamics. One
aspect which was investigated was to demonstrate the presence of low
dimensional chaos in an actual experimental open flow. This work used
experimental data from the erratic fluid flow downstream of a cylinder, obtained
from INLS's fluids lab, and utilized a new technique developed by the author for
measuring the dimension of a chaotic system from a time series. The motion was
found to have an apparent dimension of four, which agrees with an alternative
model of the system. Another problem involving chaos due to vortices was an
analytic and numerical investigation of the motion resulting from the interaction
of a vortex in an open flow and a stationary bluff body, with small sinusoidal
perturbation. It was found that, for the proper parameter regimes, the passing
vortex could actually be 'chaotically trapped' around the body for significant
periods of time. This behaviour is a relatively new phenomenon and one of
possibly large significance.

Finally, motivated by an interest in measuring and describing low-
dimensional chaos in vortex and fluid flows in general, a significant amount
results were obtained in the general theory of nonlinear analysis. An extensive
method was developed for prediction of chaotic motion based on a global,
functional description of the attractor, and utilizing only a time series of data as



input. This method was found to have superior predictive ability over most
commonly used methods. Another significant result was the development of a
new method for the determination of the minimum embedding dimension
necessary to reconstruct the attractor for a system. This method is an entirely
new approach based on information theory, and offers an alternative technique to
the ubiquitous Grassberger-Procaccia algorithm (its initial uses were to analyze
the experimental data mentioned above). In addition to these two major
projects, results were also obtained in work done on the investigation of a new
type of dynamical mapping, which has interesting property of being locally
conservative but globally dissipative. Lastly, work was begun and is still
ongoing in developing a new method for calculating the lyapunov exponents of a

chaotic system from a time series of data, in the presence of additive guassian
noise.

In all, work performed during the funding period has resulted in three

published papers, two papers currently in review, and two papers in preparation
(all of these are included as appendices). Versions of the pre-prints and
published papers will be supplied as they become available.



II. Vortex Lattices

This section describes analytic and numerical work done in the calculation
of the lattice summations for the energy of a two-dimensional, infinite lattice of
point vortices. This work wis done in collaboration with L.J.Campbell and
M.M.Doria of Los Alamos National Laboratory, and Physical Review
publication resulting from this work appears as Appendix A.

The calculation of properties (such as the energy density) for infinite
lattices with Coulomb interactions has a long history. In particular, the two-
dimensional case which arises from lattices of point vortices is an example of this
problem, as both satisfy a logarithmic potential, and with the only difference
being that of the resulting dynamics. Vortex lattices are of importance both
because of their mathematical properties, as well as being reasonable models for
superfluid helium systems, systems of line charges or -urrents, screw
dislocations in crystals, vortex-like interactions in the quantum hall effect, and
most recently as a mechanism for 'high Tc' superconductors. Until the present
work, no closed form expression existed for these lattice summations, although
there had been several attempts to derive them(see references in Appendix A).
Numerical simulations thus consisted only of clever ways to do the summations
explicitly.

The principle result of the work discussed here is the development of an
expression for the energy density of a lattice of point vortices in terms of a very
rapidly convergent product expansion. Although a more primitive form of the
summation was developed prior to this funding period, these results represent a
considerable improvement in the formalism involved, as well a a more sound
understanding of the physical interpretation. In particular, the correct form of
the normalization was finally understood, as well as a more general
understanding of the form and interpretation of the artificial neutralizing
background one must add to cancel the mathematical singularities involved in the
infinite summation (see the introduction in Appendix A). The final results of
this reformulation is summarized in Eq.21 of Appendix A; th's equation gives
the energy density of of a lattice of vortices with given species of vortices of
given strengths. This equation allows for any arbitrarily shaped, four-sided unit
cell and also for arbitrary numbers and strengths of vortices. The correct
normalization now allows for the correct comparison between different lattices
with similar number densities for different species. Since derivatives and other



operations can easily be performed on the expression, it is also suitable for the
calculation of bulk properties of the lattices and even to investigate lattice
dynamics. In its present form this expression is directly applicable to a wide
variety of problems associated with this type of logarithmic-potential lattice, such
as those mentioned above.

In addition to the above results, this formulation was then used to obtain

several new results for vortex lattices. Previously, only properties of the single-
species, single-vortex square and triangular lattices could be calculated. Section
IV of Appendix A presents the lattice shapes allowable for several new varieties
of vortex lattices. These shapes are all calculated by similar means: minima of
the lattice energy density are found by sweeping through the lattice parameters,
and actual lattice configurations are assumed to exist for these minima. Section
IV shows several new lattice structures, and gives some of the lattice energies,
for which the energy of the square and triangular lattices is verified. It should
be noted that many other new configurations of various types of lattices have
been generated, and that only the two dimensional case has been presented in the
paper. Other configurations may eventually be published elsewhere.

Finally, some results were obtained on the calculation of some bulk lattice

properties using the energy density formulation. The property of significant
physical interest for the lattices of this particular type was the energy of slip
displacement. This energy in effect measures the 'rigidness' of the lattice to
deformation along one of its principal directions. Figure 3 of Appendix A
presents a summary of numerical calculations done to measure the energy of slip

displacement for a triangular vortex lattice. Calculations of this type were
entirely impossible previously. This calculation is also primarily useful as an

example of the practicality of Eq.21 for the calculation of a wide variety of
properties associated with logarithmic-potential lattices.

It should be noted that although the author has not pursued work on this
project much beyond what is presented here, L.J.Campbell has demonstrated the
importance of these results by continuing to apply this formalism to a number of
outstanding problems, in particular some aspects relating to models of high Tc
superconductors.



III. Vortex Chaos

A. 'Chaotic Trapping' in Open Flows

This section describes work in progress which has been ongoing for

approximately one year, and which has been done in collaboration with
E.A.Novikov of INLS, UCSD. The original analytic foundation for the work
appears in a short pre-print by Novikov, and in this continuation of the work this
author has completed an extensive numerical study which will shortly appear in
pre-print form, and which contains new and significant results concerning the
interaction of vortices with bluff bodies in open flows. Examples of the
numerical results appear in Appendix B, as well as Novikov's original pre-print
to include background discussion (some of these numerical results were also
recently presented in a talk at SIAM's Dynamical Systems conference in Orlando,
May 1990 ).

The underlying model for this investigation is that of a bluff body (in this
case a two-dimensional cylinder) in a uniform two-dimensional flow, with a
single vortex passing by and interacting with the cylinder. To this system is
added a small perturbation which consists of sinusoidal vibration of the body
along the flow direction. This system is a simple and general model for a
vortex-like structure interacting with a body in an open flow, for which there
are many physical analogous; the most obvious of these is that of a tornado
interacting with structures such as large buildings. In the case of zero
perturbation, the vortex trajectories, and hence the topology of the flow field,
can be solved exactly (see Appendix B). However, for finite perturbation and
the proper parameter regimes, Novikov has shown analytically that one can
generically expect chaotic motion of the vortex to emerge. This chaotic motion
results in several consequences, the first and most obvious of which is that the

resulting vortex trajectory is unpredictable and extremely sensitive to initial
conditions. Hence the direction of scatter of the impinging vortex is highly

erratic with respect to initila position. A consequence of this is another
important phenomenon, namely that of 'chaotic trapping' (a related phenomenon
has been introduced previously in gravitational interactions by M.Henon). This
phenomenon consists of vortex motion for which the vortex approaching from

infinity can become trapped in rotational motion around the body for a (finite)
period of time, and then escape again. The trapping is a result of the vortex



being caught in the stochastic layers around the flow separatrix, which is
generated by the perturbation. Because this resulting motion is chaotic, the
rotational motion of the trapped vortex can in turn result in large pressure
differences on the boundary of the body. This phenomenon is apparently new,
and because the model predicts that this is the generic state for finite perturbation

of such systems, this phenomenon should be recognizable in physical systems as
well. Speculation is that this behaviour may be related to the destructive ability
of tornadoes, as well as that-of the highly dangerous downdrafts which

sometimes occur around airports. In addition to these physical applications, the

system is also of considerable interest as perhaps the simplest model of an open

flow system which exhibits such rich chaotic behaviour.
The numerical investigations of the above system have produced a large

body of results which indicate an even richer behaviour than was suggested by
the analytic analysis. The first major result was the study of the variation of the
topology of the flow field, with zero perturbation, as the dimensionless
parameter ; of the dynamical equation is changed (se paragraph 5 of the
Novikov preprint). Roughly, this parameter measures the ratio of the vortex and
flow field strengths. To study the variation of topology, the positions of the
stable and unstable stagnation points of the flow were found for the entire range

of a, using computer algebra and solving numerically for the roots. Once
distinct regimes for the root positions were identified, the flow fields were
mapped out by integrating the dynamical equations. Using this method, twelve

distinct topologies were identified for the unperturbed flow, far richer than was
first suspected. These topologies are outlined and included in Appendix B. The
majority of these topologies are capable of exhibiting stochastic regions, and
hence trapping phenomena. In addition, Case 3 of these topologies indicates a
stagnation point whose character is a mixture of hyperbolic and elliptic, which

may itself be a new type of structure in Hamiltonian flows.

The second important result of the numerical investigations was the
verification of the existence of the chaotic-trapping phenomenon. Since the size
of the stochastic region, and hence the probability of trapping, is moderately
dependent upon the frequency of the perturbation, the Mclnikov integral for the

system was computed numerically to determine the frequency range
corresponding to large stochastic regions. Using different values within this
parameter regime, a large number of trajectories were found, by numerical

integration, which exhibited trapping behaviour. Two typical examples are



shown in Appendix B. Trajectories were found which became trapped,
performed as many as twenty erratic revolutions around the body, and then
escaped. Within the proper parameter regimes, the measure of initial conditions
resulting in trapped trajectories seems to be quite significant, as these trajectories
were relatively easily found.

Related to the above phenomenon, a third interesting result was obtained
for this system. For the case where a stable and unstable stagnation point lie
somewhat near the boundary of the body and on the same side, trajectories were
found where the vortex could actually first become trapped around the body,
then around the elliptic point, and then often switch back and forth several times.
These 'switching' trajectories have been observed for several initial conditions,

and seem to be a somewhat unusual and counter-intuitive result. An example of
such a switching trajectory is also shown in Appendix B.

Finally, for a few cases of different parameter values, Poincare sections of
the vortex motion for specific trapping trajectories were taken. This was done
solely to aid in gaining intuition about the structure and appearence of the
stochastic layers which cause the trapping phenomenon itself. An example of one
of these sections is included in Appendix B. Although not of direct relevance to
the analysis discussed above, this type of chaotic analysis will be the subject of a
future more detailed investigation.

Future work on this project is planned to be quite extensive. Several
numerical experiments are planned to characterize the stochastic nature of the
system, including determining the measure of initial conditions which result in
trapping trajectories (it is suspected that this may result in a 'devil's staircase' ),
measuring time series of boundary pressure on the body for trapping
trajectories, and further Poincare analysis. Beyond that, the system will be
generalized by considering vortex-dipole interactions with the body, more
general boundary geometries, and alterations of the model to make it more

applicable to specific physical systems.



B. Low-Dimensional Chaos in an Open Flow Experiment

In the original proposal for this work, it was mentioned that the possibility

existed of developing new results for the generalized von Karman street as a
better model of the wake of an open flow past a bluff body. Although new

analytic results could not be obtained, an investigation was done of some
experimental data of such a flow, which seemed to exhibit a chaotic nature. The
principle tool for the analysis was a new technique for determining the minimum

embedding dimension of a chaotic signal, developed in part by the author and
which is separately presented in this document in Section IV. Using this method,
the region of the flow investigated was found to be chaotic with a dimensionality
of four, which also agrees ith a first order model proposed for the system. A
summary of these results are given on page eight of the pre-print 'Information
Theoretic Methods for Determining Minimum Embedding Dimensions of

Strange Attractors', which is included in Appendix E. As with the previous
section, this work is still in progress, and a more extensive and cooperative
effort is planned to identify low-dimensional chaos in various aspects of these

flows.
The experiment from which the data was obtained was performed by

M.Gharib and K.Lewis at the DARPA/URI fluid dynamics laboratory at INLS,
UCSD. A detailed description of the experiment will appear as a pre-print in the
near future. Briefly, two thin rotating cylinders of slightly different radius are

placed end-to-end and perpendicular to an otherwise uniform flow field. Both

cylinders generate vortices in their downstream wake, however the mismatch in
radii causes an unstable interaction which results in low-dimensional chaos in the

flow near the boundary of the two regions. A photograph of the flow, supplied

by K.Lewis, for a typical experimental run is shown in Appendix C, as are a
time series and FFT for the chaotic region.

The MDL technique for measuring minimum embedding dimension was
used on a set of several different time series from these experiments, in an
attempt to determine whether this flow was indeed low-dimensional chaos (this
method is described more fully in Section IV). It should be noted here that the

conventional method for determining embedding dimension, ie. the Grassberger-
Procaccia algorithm, yielded inconsistent results for this particular system, and
this was one of the primary motivations for the use of the new MDL algorithm



to analyze this data. After considerable analysis, it was shown that this flow
typically seemed to have a dimensionality of four, although the dimension could
be as high as six for some parameter regimes. A plot of the MDL function for a
typical data series is also shown in Appendix C, showing the minimum of the
MDL function occuring at a dimension of four. Since Gharib and Lewis have
proposed a model for the chaotic region based on coupled duffing oscillators,

which should also have an expected diemnsionality of four, these results seemed

to confirm this conclusion.
Although work on this project is still ongoing and results are somewhat

preliminary, this investigation could prove very significant as an excellent
example of low-dimensional chaos in a flow which can be demonstrated
experimentally, analytically, and through nonlinear time series analysis. Future

work is also planned, in cooperation with researchers in the DARPA fluids lab,

which will involve a similar analysis in an attempt to look for low-dimensional

chaos in the velocity and acoustic fields of a submerged jet.



IV. Measurement and Prediction in Chaotic Systems

Because of the authors interest in investigating chaos in vortex flows and
in fluid flows in general, there was considerable motivation during this project to
study the various methods for measuring, characterizing, and predicting chaotic
behaviour in flows, in particular those resulting in time series from actual
physical systems. It was generally found that, although idealized methods for
analyzing chaotic motions were well established, application of these techniques
to real physical data, which often include significant levels of noise, was often
very poor. A significant amount of effort during this funding period was
therefore devoted tc investigating and developing improvements in these
techniques, which would be more robust to the problems associated with real
data (ie. noise, short data sets, irregular sampling of data, etc. ). These new
techniques were investigated with an eye towards increasing the analytic abilities
for experin-tal data, especially that being generated at the DARPA UCSD
fluids laboratory. This work during the past 1 1/2 years has resulted in two new
and powerful methods for the analysis of chaotic data from actual physical
systems, and has produced two published papers and one paper currently in
review. These two methods are outlined below.

A. Global Prediction for Dissipative, Chaotic Systems

Most methods of analysis for chaotic systems involve the
measurement of several physical properties which are known to indicate chaotic
motion, such as the dimension, the lyapunov spectrum, etc. Once these quantities
are determined, the obvious next step should be to use these quantifiers for
model selection, signal processing, prediction, and the like. Surprisingly, only a
handful of papers exist which attempt to develop any of these applications, and
very few serious efforts to analyze actual data have been done. The work
described below, done in collaboration with H.D.I.Abarbanel and R.Brown of
INLS, UCSD, was an attempt to develop a general method for modelling a
chaotic systems' flow in phase space by simultaneously utilizing as much
dynamical information as possible, in the most efficient way, and then utilizing
this information for prediction. Prediction in this sense means the generalized
forward extrapolation of short segments of phase space trajectories, which can
then be used for actual prediction or for signal processing, noise reduction, etc.



The results of this investigation grew into a somewhat extensive general
methodology, which is described in the two papers included here as Appendix D.

To give a brief overview of the method, the basic idea starts by
reconstructing a chaotic systems' attractor in phase space from a time series
using time-delay embedding and the standard methods to determine the
embedding dimension and the autocorrelation time. The general procedure is to
model the local flow on the attractor by a mapping function which uses the
information of where nearby neighboring points on the attractor are mapped to.
This function can then be used to predict where a new point on the attractor will
evolve. In the formulation and the numerical algorithms which were developed,
a general form of the mapping function is used with the important properties that
it is global, in the sense that only one function is used over the entire attractor,
and secondly that the function is well defined analytically, so that for example

gradients can be computed and local derivatives can be used for parameter

fitting. Specific information about the given dynamical system is then built into
the mapping function in the following way: the mapping function contains

parameters which weight the way local information on the attractor is used, such
as the number of neighbors to include, the number of previous iterates to
include, the length scale involved, etc. The correct parameters that globally

describe the particular attractor are then found by nonlinear least-squares fitting
of the function to the data s6t taken from the dynamical system. The correct
parameters are then chosen as those which optimally reproduce the given data set

from the system.
Perhaps the most important aspect of this method is the inclusion of

additional dynamical information about the system in the mapping function. In

addition to the dimension, there also exist other important quantifiers of the
character of the chaotic motion which can be extracted from the time series data.
These include the lyapunov spectrum of exponents, and the probability density of
orbits on the attractor. These quantities are measured from the time series using
standard algorithms, and are then also built into the mapping function in the

following manner: the functional values that these quantifiers should yield for the
given mapping are derived from it by taking gradients and using appropriate

definitions. When the nonlinear least-squares parameter fitting is being done, the

map is simultaneously constrained to also reproduce che appropriate values of the
dynamical quantifiers. Examples of the results of this type of constrained
optimization are given in both papers in Appendix D. The point of this is that



the resulting map now reproduces not only the data to some accuracy, but also

reproduces the correct dynamical characteristics of the system. It is therefore

expected that this constrained fit for the function will prove to be a more

accurate predictor of the actual motion of the system.

Extensive testing and development of this idea have generally shown that

this type of constrained parameter fitting seems to produce considerably superior

predictive power than that of other less sophisticated techniques. Results of this

work have generally shown (see Appendix D) that it is possible to find global
mapping functions which reproduce time series data to an excellent degree (

0.5% average rms error or better ) and which are also capable of accurately
reproducing the dynamical quantifiers, and hence have the same chaotic

invariants, as the original system. Additionally, numerical experiments with the

reproduction of known trajectories have shown that this type of predictor can

accurately predict orbits significantly farther than the majority of other known
methods, with shadowing trajectories for example staying close to the original
Henon trajectories for as long as seven or eight iterations. In addition, this

method seems better suited than most methods to actual experimental data, which

may include significant noise components, because of the inherent averaging of

the local phase space flow which occurs via the mapping function.
Although much of the work on this technique is completed, it has yet to

see widespread use for time series of actual physical systems. Therefore, future
plans for this project involve primarily identifying systems for which this

technique may prove useful, and for which more practical experience can be

gained. Actual improvements to the method will involve investigations of

different types of general mapping functions, which could improve accuracy, and

also of different algorithms for searching data sets for nearest neighbors, which

currently consumes the majority of the computational resources associated with

the calculations.



B. Information Theoretic Methods for Determining Dimension

The second major pro; ,hich was undertaken to develop new
methods for chaotic time series analysis was the attempt to develop a method for
determining the embedding dimension of a chaotic attractor. Determining the
correct embedding dimension is the first necessary prerequisite for performing
time-delay reconstruction of the attractor' from a time series. The standard, most
successful method for determining the embedding dimension is the Grassberger-
Procaccia algorithm, but this algorithm has several well known difficulties,
including ambiguity in determining the minimum embedding dimension that can
be used, as well as sensitivity to noise, and often quite substantial data
requirements. The new method, which was developed in collaboration with
H.D.I.Abarbanel of INLS, is based on a result from information theory, and has
the advantages of unambiguously determining the minimum embedding
dimension allowable, as well as being much more robust to noise and requiring
less data. The background and results of this new method are presented in the
pre-print included in Appendix E, which is currently in review.

The central tool of the new method is a result from information theory
which was developed over some time by Aikaike, Wax, Kailath, and others. This
result is the definition of a function, called the Minimum Description Length
(MDL) function, which quantitatively weighs a functional which is essentially the
maximum likelihood fit to a data set, versus a measure of the complexity of the
model used to generate the fit. In simpler terms, it weighs the trade-off between

a data model being a better fit to the data, versus how complex (ie. how many
parameters) the model has. For a class of fitting functions whose dimensionality
is a variable, the MDL function can be proven to take a minimum at the minimal
number of dimensions necessary to describe the data. The principal result of the
paper in Appendix E is the adaptation of this function for time series of real data
and for different normalizations and parameter counting, and is now called the
Data Description Length (DDL) function. This paper demonstrates how the
DDL function can be used to determine unambiguously the minimum dimension
necessary to embed an attractor from a time series of data.

The actual algorithm which was developed works by first constructing a
data matrix from the time series, and then calculating its eigenvalues by singular
value decomposition. These eigenvalues are used in the determination of the



maximum likelihood fit to the data. For the present method, a guassian
distribution of the reconstructed attractor is assumed, which of course is
inaccurate for most attractors. The central point here is that although our
assumption is crude, the question being asked is also rough, ie. how many
independent dimensions is the attractor distributed along. By assuming a
guassian distribution, the specific form of the DDL function can be written
down, and from this formula the numerical value of the DDL function can be
calculated for each value of the embedding dimension. The dimension for which
the DDL function takes a minimum is the dimension which best describes the
data, under the constraints of the particular distribution chosen. The algorithm
has been developed to the point where one simply supplies the time series as data,
adjusts a few parameters to the proper regimes, and then picks off the minimum
of the resulting plot of the DDL function to find the correct embedding

dimension.
Results of experimentation with the DDL algorithm (see Appendix E)

have shown the technique in most cases to unambiguously yield the correct
embedding dimension for test chaotic systems. In addition, and quite
importantly, the method works in the presence of significant amounts of noise
(up to 15-20 dB SNR ), and also requires far less data and computational
resources than the Grassberger-Procaccia algorithm. This makes the method
particularly well suited to analyzing experimental time series. There are still
some difficulties, however, with determining the dimension of attractors whose
topology is not simple (ie. multiple lobes or interleaving). This prohlem is
almost certainly related to the choice of a gaussian distribution for the
underlying maximum likelihood fit, as discussed above.

Although no immediate work is planned on this project, future efforts will
have to address the problem of formulating the DDL functional form based on
the inclusion of higher order terms in the underlying maximum likelihood fit.
This, unfortunately, has already proven to be a difficult task. Finally, further
application to known systems will be necessary to gain additional practical

exprience.



V. Summary

Research performed during this funding period has included: an improved
formulation for the energy density of an infinite lattice of vortex-like objects,
and an investigation of all possible geometries of the two-component, triangular
vortex lattice and its energy of slip displacement; an extensive numerical
investigation of the properties of an important new model of the interaction of a
vortex with a bluff body in an open flow, which exhibits a 'chaotic trapping'
phenomenon; identification of low-dimensional chaos in a vortex interaction
experiment in open flows, utilizing a new method for determining minimum
embedding dimension; an extensive new method for using time series of data
from chaotic, dissipative systems to do system identification and prediction; and
finally development of a new method for computing the minimum embedding
dimension from a time series, used in the vortex experiment above, which is
unambiguous, requires less data, and is more robust to noise than conventional
techniques.

All of the above projects have resulted in significant new results regarding
either vortices or vortex dominated flows; the determination or description of
chaos in systems; or both aspects; and have culminated in three published papers,
two papers currently in review, and one pre-print currently in preparation.
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Energy of infinite vortex lattices
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J. B. Kadtke
Instiute for Nonlinear Science, University of California San Diego, La Jolla, California 92093

(Received 28 November 1988)

An expression is derived for the energy density of a lattice of point vortices (or other logarithmic
objects) having an arbitrary number of vortices of arbitrary strengths in an arbitrary unit cell. The
result is expressed in the form of a rapidly convergent series well suited'for numerical evaluation.
The effects of separately changing the shape and dimensions of the unit cell are shown for simple
cases, and the energy of the triangular lattice is calculated as a function of slip displacement.

I. INTRODUCTION of this expression it becomes easy to compare the energy
of all possible lattices containing the same mixture of vor-

We consider the problem of finding the energy of an tex species.
infinite number of classical point particles confined to a
planar lattice and interacting pair wise with a logarithmic II. LATTICE ENERGY
potential. These particles will be viewed as vortices in an
Eulerian fluid; they are also equivalent to rectilinear line The total energy due to mutual vortex interaction is
charges, line currents, or screw dislocations. Our objec- E - d 1 , Frln~r-rj, (1)
tive is to find the relative energy of different E-- i j
configurations of J vortices having strengths
r,,r,....., r in a unit cell defined by the lengths L, where d is the fluid density (mass per unit area) and the
and LZ, of its sides and the angle $ between them. double sum omits i =j. For an infinite lattice ET is un-

If the sum of the vorticity strengths is not zero in the bounded, even in the presence of a background. However
unit cell the system is stationary only in' a coordinate this unboundedness is easily avoided by considering the
frame rotating with angular velocity fl, energy per vortex E, which is finite:

r 41r
fl= = E=hlim -- ET, (2)

2LL 2 sin42 .j=O1d

where M is the number of unit cells. It is convenient to
We consider the lattice only in such a frame or, subdivide the sum over all vortices into sums over the J

equivalently, in a nonrotating frame with an imposed vortex species in all unit cells,
background solid-body rotation of the opposite sign.
-fir. Similarly, an opposite uniform background charge 1=7 T1+ ""+ (3)
or current would be needed for line charges or currents. J Ji J2  i
Such constant background fields play no role in the lat- and to note that
tice properties, and serve merely to cancel formal' singu-
larities that occur at zero wave number. Of course, these n +L,,. (4)
background fields must be explicitly included to study the -rjar"
global properties of finite2 systems. Ja ib

The task of deriving lattice sums for Coulomb interac-
tions has a long history.3 Our purpose hcrc 's to obtain The sum in the above equation is or. al' integers
the most efficient lattice sum for a general two- n0,n2 =0,±l,±2,..., except if cf=, in which case
dimensional lattice and our method based on results by n n2 =0 must be omitted. The vortex positions are r.,
Glasser, 4 who considered the particular case of a rec- a= l, ... ,J in a reference unit cell and
tangular unit cell (0=90*). In addition to obtaining a
rapidly convergent lattice summation, we obtain an ex- L, =Ln le,+L 2n2e2  (5)
pression for the energy density of a vortex lattice that is
invariant to physically equivalent designations of the unit is a generic lattice vector (ete 2=coso). Using Eqs. (3)
cell, which a:e not necessarily primitive cells. By means and (4) in Eq. (2) gives
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2 j- 2fri(mly +m 2Y2)E=-ry 7 I,I- L, rrj' In r4 + LI r(l e' (X = P+ 2 2
nj a'1 3-"2 7 2r mi.m2(#O)mt+m2P -2 mlm2pcosoa<0

(6) (13)

wherc where yi=(xjsin0-x 2cos0)/Ljsinp and Y2=X2/
L2sino. The same sequence of transformations of Ref. 4

yLI,= r 2a (7) then leads to

and V(x)=(sin#/pir) cos(kz2 /sino)/k 2
k-l

0 r 0 0

-n fl h(s,z,,z 2 ), (14)

III. LATIlCE SUM where

To evaluate the lattice sums in Eq. (6) express the
Fourier transform of the logarithm function using box h (s,zl,z 2 )= 1-2e -(z 2 +2=sin1/pcos z + osIb
normalization,

-lnlxI = 2im 21r exp(ik-x), k=21r n +e2lz2± sn dI/p (15)
l2+m-2

A-osIs2 I k +p"' ' ns2 with z, =21rx/L andp_LI/L 2.
(8) In terms of these new variables a lattice translation

x--ix+L, becomes z,--.zj+21Tn,+27r n 2cos0/p and
in the limit where s, and s2 become infinite. A nonzero z 2 --*z 2 +21rn 2sind. It is easy to verify that Eq. (14) is in-

mass" parameter I changes the logarithrm function into variant under lattice translations, consistent with Eq.a short-ranged one, and is a fundamental parameter for (10). The first summation of Eq. (14) can be performed,
understanding the effect of the background. To perform giving the more efficient representation, 5

the lattice sum it is convenient to employ the so-called
reciprocal-lattice vectors g defined by (sino/ir) I cos(kz 2 /ino)/k 2

=2Tr +2

sin& "L L 2  v ,e=51/sin$' (9) =z21(lz 2l/sino-21T)/4w+ir(sino)/6, (16)
valid for iz2I <21rsino. The consequent loss of transla-

Thei., tional invariance in the e2 direction causes no difficulty in
numerical evaluations.

Inx+LI V(x)+co , (10) The expression for V(x) given by Eqs. (14)-(16) con-
verges quite rapidly. In practice, the evaluation of the
infinite product of terms h (s, zI,z 2 ) reduces to the multi-

where plication of about four to eight terms because, for large
integers s, h(s,z1 ,z2 ) is dominated by unity plus terms

27r . - ) proportional to exp(-s), which have a very fast decay.
LL 2sin ,) g2 This product expansion is almost identical to the expan-g(inO sion for the Jacobi 0 functions; for the special case of

2=90* studied by Glasser, it. reduces to them. Finally, an
C, Jlim . (12) expression is needed for the first term of Eq. (6), which isLL 2sinb the energy of identical vortices on a primitive lattice, a

result derived also by Tkachenko.6 This term is
The divergent constant c,, corresponds to the g=0 corn- equivalent to the following limit:
ponent (mI =m 2 =0); the effect of the background is to
cancel this divergent constant. 'nILI im 3. lnlx+L.I-Ix , (17)

To apply Glasser's method one first writes Eq. (11) in a
more explicit form, Performing this limit on Eq. (14) gives

' 2v s11/pC 41mlsin$/p
-7' IntL, I 2Lsin,-ln(27r/L)-In rj 11-2e 21rs(cos?)/p]+e

)-l 6pI~4Tlin/J.(8
Now we scale the energy to obtain equal energies for physically equivalent lattices. This is simply done by noting

that E in Eq. (6) is the energy per vortex. Hence, scaling the lengths L 1 and L 2 by a constant a gives the correc¢ nor-
malized energy and renders a constant vortex density. This causes no changes to the ratio L1 / L 2, but in Eq. (18) the di-
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mensional constant L enters alone. We choose the density to be unity, i.e.,

i ...= (19)
a 2L1 L2sino

Solving for a and multiplying L in Eq. ( 8) by a then gives

ln2(L)I 21T 1/21(0

which removes all dimensional constants from Eq. (6), except for the r,,, whose dimensions are trivial to remove.
The final result for the energy density is

E=r 'sino-In 2r -Inf h(s,0,O)[JP S=

+ 2 r, rj L--- 2 r I 7 sinq2 -+Ln M00. , (21)

J1 p 47r sind'b 6 (21)i'2J
i<j

where zoo=2.r(r,-r)k /L,, Z2 . =2rr(r9-rO).5 /L 2, IV. EXAMPLES
and h (s,zl,z,) is defined in Eq. (15). This expression for
E gives the relative energy density of lattices containing The foregoing results will now be applied to some sim-
fixed ratios of vortex species having fixed strengths. To pie examples. First, consider the change of lattice energy
compare the energies of lattices which do not have the density induced by varying the angle 0 between the lat-
same mixtures of vortices requires assumptions or physi- tice generators while holding fixed the lengths of the unit
cal information about the vortex self-energies, cell and the relative positions of the vortices. Three cases

What makes Eq. (21) useful for numerical evaluation is will be considered: (a) one vortex per unit cell with
the fast convergence of the function I (s,z I ,z 2 ). Some ap- L I =-L2; (b) two vortices per unit cell, also with LI L2;
plications, not discussed here, require calculating the par- and finally (c) two vortices per unit cell with
tial derivatives of E, for which it is convenient to change L =L 2 /IV3. The results as calculated from Eq. (21) are
the unit-cell variables p and 6 to a=2r(sin6)/p and shown in Fig. I. The triangular lattice occurs for (a)
X=2rr(cos)/p. when d=60* and 120* and for (c) when 0=90°. The

•1.15 -0.8

a b c d
'I, >, -1.0

0i.

-1.25

T -1.2 b

-1.35 . - I I d
50 70 90 110 30 -1.4•

(deg) 0.5 1.0 2.0 3.0

FIG. 1. Effect of varying the angle € between the unit-cell L2ILl
generators for fixed unit-cell lengths. The different unit cells are
illustrated for 0=90". (a) One vortex per unit cell with L, =L2. FIG. 2. Effect of changing the aspect ratio L2 /Lt for fixed
(b) Two vortices at positions (0,0) and (0.5,0.5) with respect to angle 0. The various unit cells are illustrated for L2/LI = 1,
the unit-cell lengths, Ll =L2. (c) Two vortices at positions (0,0) with the vortices associated with the unit cell indicated by solid
and (0,V3/2) in a unit cell with L, =L2/V3= 1. The energy circles. (a) One vortex with 0=90. (b) Two vortices with
density is the energy per vortex in units of dr2/47r, where d is p=90". (c) Two vortices with 0=60. (d) Two vortices with
the fluid density and r is the unit of circulation. 0=45".
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square lattice occurs for both (a) and (b) at 6 =90". The
energy densities of the triangular and square lattices are
- 1.321 117 428 4 and - 1.310 532 925 9, respectively. -1305

(Earlier evaluations of the energies of these simple lattices
are equivalent within constants.6 '2) Although curve (b)
has a minimum at 6=900 this is a constrained minimum ( 2

and does not result in a stable lattice; indeed, it joins ,.31s
curve (a) which leads to the absolute minimum.

Next, the angle 0 is constrained and the ratio of unit-
cell lengths L2/LI is varied. These results are shown in
Fig. 2, where the various cases are (a) one vortex and (b)
two vortices per unit cell with p=90, (c) two vortices 0.32s 0.2 0'4 o: r 1.0
with 0=60, and (d) two vortices with 0=45". Only dsament
curve (b) achieves the triangular lattice. This occurs at
L2/LI =V3 and I/V3. Note that the horizontal scale is
logarithmic, to illustrate the symmetry around L 2 /L FIG. 3. Slip strength of triangular vortex lattice for the rigid
=11. It appears that curve (d) may also reach the low en- displacement of n rows of vortices with respect to n stationary
ergy of the triangular lattice. Iti fact, it does not, nor is rows in each unit cell. The curves are labeled by n and the
the minimum it does reach an unconstrained minimum of range of displacement is one lattice spacing along a principal
the lattice. Also despite appearances, curves (b), (c), and axis.
(d) do not mutually intersect.

Finally, the slip strength of the triangular vortex lattice
is calculated for displacements along one of the principal
axis directions. That is, the energy density is evaluated as
a function of a rigid displacement, through one lattice when the lattice energy is calculated as the N-+ co limit
spacing, of a number n of lattice rows with respect to the of a finite system. By the same method as used for
same number of fixed rows. The pattern repeats, of charges, this singularity can be removed by adding a neu-
course, to infinity. During this displacement the unit-cell tralizing background. For vortices, this background is
dimensions and angle are held fixed so, in particular, taken to be uniform, with the result that there is no
there is no change in volume. Figure 3 shows the results phenomenon of screening. Also, like charges, the field
for various n, as labeled. Obviously, the maximum for each vortex leads to a formal singularity in the self-
occurs for a displacement halfway between equilibrium energy in the limit of vanishing core size. This singulari-
positions and is largest for alternating single rows ty, too, is irrelevant, except that it prevents, in the ab-
(n = I). This energy is just that of a rectangular lattice sence of further assumptions or physical information, a
with L 2 /L, = ( V 3 / 2 )±tI=(0 .866 )tI, which can be comparison of the lattice energies of vortex systems con-
verified by comparing the maximum in Fig. 3 with curve taining different mixtures of vortex strengths.
(a) in Fig. 2 at that ratio. The curves are approximately The energy density of the general vortex lattice (arbi-
related to each other by trary unit cell and arbitrary number, magnitudes and

signs of strengths of vortices per unit cell) is given by Eq.
nj[Eid)-EJ]=nk[Ek(d)-EJ , (22) (21), which has the virtue of being easily evaluated nu-

where E, is the triangular lattice energy density (given merically, in the sense of rapid convergence of its infinite
above) and d is the displacement. Future publications products. This expression provides a new, practical tool
will treat other applications, especially those that involve for studying a wide range of vortex lattice problems.
seeking minima of the energy density in the presence of
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Chaotic vortex-body interaction
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ABSTRACT

It is shown, by using the Poincar-Mclnikov-Arnold method, that the motion of a linear
vortex in the flow past a cylindrical body is chaotic. In particular, a vortex can be captured
by the body and then, after some complicated rotation MZ.-OX the body, can be lost. More
general problems of vortex-body interaction are discussed qualitatively. Possible applications of
the theory are indicated.



The study of the chaotic interactions of lincar vortices has a twelve year history with the
participation of many authors (see Ref. 1-15 and references therein). Generalization to the
axisymmetric flows have been indicated in Ref. 16. The main conclusion from these Studies is
that two-dimensional and axisymmetrical flows of ideal incompressible fluid are generally non-
integrable and with appropriate initial conditions exhibit chaos. This is in contrast with the
opinion which prevailed earlier among the advocates of the soliton approach to the hydrody-
namics. The chaotic motion of vortices has various applications, in particular, to the problem
of weather prediction.. ' '"

The main goal of this note is to indicate novel features of chaotic motion which arise in the
presence of a moving body. Firstly, it is enough to have only one vortex in order to get chaotic
motion. Secondly, the mechanism of generation of chaos is very transparent in the vortex-body
system. Thirdly, we get new phenomena - chaotic capture - loss of vortex by a moving body.

Vortex-body interactions are important in many situations. The most dramatic examples are
the aviacatastrophies, caused by a vortex initiated by downdraft of cold air,ts and the destruction
of buildings by tornado. We will start with an analytical description of the motion of a linear
vortex in the flow past a circular cylinder. Then we will make some qualitative remarks about
more general problems.

In the frame of reference moving with the cylinder, the velocity of a linear vortex in an ideal
fluid is a Hamiltonian superposition of two parts of motion. The first part corresponds to the
potential motion of fluid relative to the cylinder (see, for example, Ref. 19), such as if the vortex
has zero intensity. The second part of the motion is induced by the interaction of vortex with
cylinder. In the case of circular cylinder, this motion is induced by an image vortex, placed
inside the cylinder at the distance from the center F = a2/r, where a is the radius of cylinder
and r corresponds to the position of vortex. Both parts of motion have zero normal components
of velocity at the surface of the cylinder.

We will scale distances by a and time by a/uO, where u0 is the characteristic fluid velocity
at infinity. If the fluid velocity at infinity is constant, then the problem is characterized by only
one nondimensional parameter 'a = xc/27rauo, where r. is the vortex intensity. In the case of
vibration of cylinder, we have the relative fluid velocity at infinity

u(t) = uo(1 + csin wt), (1)

where e and w are the nondimensional amplitude and frequency of vibration.
In polar coordinates (p, 0) with origin in the center of the cylinder, the Hamiltonian system

for the motion of the vortex has the form

dp 1 8H i\p8n I-k - .) esinwt), (2)t P DO P #
dqO lo 181_Cos~ I
di _+ I (I + csinwt) p2 1 1  (3)
I"T = H0 + d -

r

tI Ho + ell, = >1I
a

-Ho : 2s(p2.-.1)+ ln(p_.), - (4)
p



= cos(p2_ -1)sinwt. 
(5)

P

With c = 0, the system (2)-(4) has a general analytical solution. The vortex trajectories (4)
are presented in Fig. 1. Without loss of generality, we assume that the motion of luid around
the vortex is clockwise (a < 0) and the direction of fluid velocity at infinity is from the top to
the bottom on Fig. 1. We see that there is a homoclinic vortex trajectory [po(t), Oo(t)] with
the hyperbolic stationary point at = 0,p = p., (. - p3 - p.). The homoclinic trajectory
separates the region where the vortex is captured by the body.

The stationary trajectories of vortex in the flow past circular cylinder have been studied
in Ref. 20 without recognizing the Hamiltonian structure of the problem. The homoclinic
trajectory have not been indicated in Ref. 20, probably because at that time the homoclinic
trajectory was considered as something pathological and physically irrelevant to the problem.
Now we know how important the homoclinic trajectories are for the generation of chaotic motion.

For e small but non-zero, the system (2), (3) has no analytic integrals of motion. It possesses
transversal intersecting stable and unstable manifolds - namely, the Poincar6 maps P(to) which
advance a solution by one period T = 27r/w starting at time to, possess transversal homoclinic
points. We will show this by using the Poincare-Melnikov-Arnold (PMA) method. This type of
behavior of dynamical systems is called chaotic.

According to PMA method," 2,'23 we consider the Melnikov function

M(to) = I {Ho, HI)(po(t - to), o(t - to); t)dt, (6)
00

where {, denote the Poisson brackets

{A, B) (p, q; t) = 1 [,9A(p, Ot),B(p,O,t) OA(p, q, t) 8B(p, ,t)]

Integral (6) is taken along the homoclinic trajectory [po(t - to), 0(t - to)]. We will show that
M(to) has simple zeros.

From (4)-(6), by . change of variable, we get:
/s i.[(t- to)!

M(to) - J-00 sPo(t - to) sinwtdt

f00 sin['0(t)],
- 014- cio(t) (sin wt cos wto + coswisin to) dt (7)

Since #o(t) -4 0, po(t) -4 p. exponentially near the hyperbolic stationary point (when t --4 oo),.
the integr;.l (7) is convergent. It is convenient to choose the initial position: Oo(0) = 7r. In this
case we have Oo(-t) = -Oo(t),po(-t) =Po(t) and (7) reduccs to:

M(1) =~~costo sin[ o(t)j sin wt dt. (8)
Mf(to) = -.- coswto f 00 [o~)o 0(t)siwd(8

The integral in (8) is not identically zero, because it is the Fourier transform of a function
which is not identically zero. Function M(to) clearly has simple zeros. According to PMA theory,

2



this proves that system (2,3) has no analytic integrals of motion and vortex trajectory is chaotic.
In particular, the vortex which is initially far from the body, can intersect the homoclinic loop
and will be captured by the body. After several complicated revolutions around taee lody, the
vortex will eventually escape.24 In connection with the capture-loss phenomena, we have the
following theorem. Let S be the set of positions of the vortex at time to, for which the vortex for
all t > to will stay inside a circle C surrounding the body. It can be proven that the subset of S,
for which the vortex was outside of C of some t < to, has zero measure. The proof is the same as
in the Littlewood's theorem2" for conservative (gravitational) system. The only condition which
matters is the preservation of volume in phase space. The nonautonomous Hamiltonian system
clearly satisfies this condition. The theorem remains true if instead of circle C surrounding the
body, we choose any area in phase space.

In the case of arbitrary shape of a cylindrical body we still have Hamiltonian superposition
of external and induced motion of the vortex in terms of corresponding Green's functions for
the Laplace operator. The external velocity is finite everywhere. The induced velocity is infinite
near the body and zero at infinity. Having this in mind, we generally can expect existence
of a homoclinic separatrice with hyperbolic stationary point, where two parts of velocity are
balanced (in the case of stationary external velocity). Thus, the described above phenomena of
chaotic vortex-body interaction seems to be generic.

The local kinematic pressure, exerted on the surface of the body by the vortex, is of the order
of , 2/d, where d is the distance between vortex and body. In the chaotic regime of motion, a
vortex can come closer, it will spend more time near the body and is more likely to create a
destructive impact on the body.

The generalization to the case when we have additional circulation xo around the cylinder is
straightforward. In this case we have to add into (4) the term -oo In p, where 0o = xo/27rauo.

.By using the above described procedure, it is easy to show that in the time-periodic external
flow, the motion of fluid particles becomes chaotic even without a vortex (ur = 0) when lao1 > 2.

Condition juoj > 2 insures the existence of a hyperbolic stagnation point when b. = 0.
Generally, when o, 0 0 and ao # 0, the unperturbed system has several stagnation points
(hyperbolic and elliptic). With c - 0, the vortex can chaotically change the direction 6f rotation

.... .. during the capture. This is clear physically, but it has to be investigated in
detail numerically.

In practical problems, the vortex has a finite core, which leads to a system with an infinite
number of degrees of freedom. If the size of the coie is small in comparison with the size of the
body, the multipole representation of the vortex can be used. In the simplest representation we
have two closely located concentrated vortices, which rotate around each other. In this case we
get chaos even without oscillation of the cylinder (c = 0). The proof is lengthy and will not be
'presented here, but the idea is simple - the reduction of the Hamiltcnian system."3 The slow
variables are the coordinates of the center of vorticity, the angle of mutual rotation of vortices
plays the role of time and the distance between vortices is a small parameter. In the case of
bigger distances between two vortices, one of the vortices can be captured forever and other
will escape. The capture of one of the vortices does not contradict Littlewood's theorem. This
kind of partial capture of vorticity in a more complex situation happens when a tornado hits a
building.

3



The problem of three-dimensional chaotic vortex-body interactions with the effects of vortexstretching and reconnection is more difficult and profound. In this case we plan to use the methodof three-dimensional solenoidal vortex singulazities (vortons), which includes a mechanism ofinviscid dissipation of energy. ,26
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Figure Captions

1. The vortex trajectories in the flow past a cylinder (p. 3).
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We consider the problem of prediction and system identification for time series having broadband power spectra which anse
from the intrinsic nonlinear dynamics of the system. We view the motion of the system in a reconstructed phase space which
captures the attractor (usually strange) on which the system evolves, and give a procedure for constructing parameterized maps
which evolve points in the phas space into the future. The predictor of future points in the phase space is a combination of
operation on pazt points by the map and its iterates. Thus the map is regarded as a dynamical system, not just a fit to the data.
The invariants of the dynamical system - the Lyapunov exponents and aspects of the invanant density on the attractor - are used
as constraints on the choice of mapping parameters. The parameter values are chosen through a least-squares optimization pro-
cedure The method is applied to "data" from the Hinon map and shown to be feasible. It is found that the parameter values
which minimize the least-squares criterion do not, in general, reproduce the invanants of the dynamical system. The maps which
do reproduce the values of the invariants are not optimum in the least-squares sense, yet still are excellent predictors. We discuss
several technical and general problems associated with prediction and system identification on strange attractors. In particular,
we consider the matter of the evolution of points that are offthe attractor (where little or no data is available), onto the attractor.
where long-term motion takes place.

A broadband power spectrum observed in the time (n)=[x(f),x(n+ T,.x(n +rD) (
series of a system variable may have its origin in noise
extrinsic to the system. However, it has become clear describes the evolution of the system in the embed-
in recent years that its origin may be in the nonper- ding space. Theorems due to Takens and Mafid [ 3,4]
iodic, deterministic chaos associated with a nonlin- tell us that if D is about twice the Hausdorffdimen-
ear system evolving on a finite-dimensional strange sion of the attractor, we are assured of a good rep-
attractor [ 1 ]. In the latter case, which is the one we resentation of that attractor by the y(n). In practice,
address in this note, the geometrical structure of the and in this note, a good representation is achieved
attractor and thus of the time series may be exposed by taking , =j, with T a common lag, and D the least
L, the method of phase space reconstruction [2-4]. integer dimension greater than the Hausdorff di-
This takes &n observed scalar variable, x(n)= mension. Along with others, we use properties of a
X(t0 +nAt), and produces a D-dimensional embed- correlation function [6] to decide which D is ap-
ding space from the time lagged signals x(n), propriate for a given data set.

x(n +i ), ... , x(n + .TD_ I), where the T, are appro- The evolution of vectors y in the embedding space.
priately chosen lags [5]. The sequence of D-vecturs RD provides a dynamically sound setting for the
for n= 1, 2, ..., N analysis of the broadband time series. The first step

in our analysis is system identification or parameter
Institute for Nonlinear Science. estimation for a map F(y, a) fiom RD to itself, de-

0375-9601/89/S 03.50 0 Elsevier Science Publishers B.V. 401
(North-Holland Physics Publishing Division)
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pending on parameters a= (a,, ... , a,). This map neighbors of a point to assist in predicting where it
takes y(n) to y(n+ I): will go, we choose mapping functions F(y, a) bf the

orma
y(n+ I) =F(y(n), a). 

(2)

N-!

Given a form for F(y, a), the parameters a are to be F(y, a)= y(j+ I )f(y,y(j), a), (4)
estimated. Both the form of F(y, a) and the criteria J_

for choosing a are the issues of this note. Using F(y, where the y(j) are the Dvectors constructed from
a) for prediction of the future evolution of the un- the original scalar time series x(n). The f,(y, y(fl,
derlying system or for its control will be the subject a) are functions parameterized by the a's and vanish
of subsequent papers [7]. rapidly when [y-yj)12/a:t. 1. (1lls the Euclid-

Actual extrinsic noise complicates the analysis of ean distance in b-.) F(y(n), a) is then determined,
time series and, of course, is inevitably present in any by all the neighbors of y(n) regardless of the tem-
interesting time series. In this note we ignore the role poral order in which the neighborhood is visited. For
of such extrinsic noise. We wish to separate the treat- pora e ihich the egboho is v is Fmentof atawithintinsc bradbnd imeseries appropriate choices of f the value of F(y, a) isa
ment of data with intrinsic broadband time x - weighted average of the places in pD to which the
from the study of such data c6ntaminated by extn-map.
sic noise. We will return to the analysis of extrinsi- or of coin o ( itr ), a p.

cally contaminated chaotic motion in our later work Our specific choice of f 0(y, y(j), a) is

[7]. f(y, y'), a) =exp(-ly-y()121a)
One of our central assumptions is that the points

y(n) lie on an attractor which is usually strange or X (
fractional dimensional. Motion on the attractor is X1 a' +a2 y(j)-[y-y(j)]
taken to be chaotic or sensitive to initial conditions.
Thus, predicting the value of points, y(n), on any + W
individual orbit evolving from a starting value y( ): k3 lY-Y /

y(n) =F(y(n- 1), a) =F(F(y(n-2), a), a) with mk some choice of integers. This is one among -

=F2(y(n-2), a)...=F-I(y(l), a) (3) a large class off's satisfying our requirements of.
evolving points according to the fate of their neigh- A

is a numerically uncertain matter as n grows large. hors. This equation determines how "close" y is to !
Indeed, for familiar low-dimensional systems such each of the data vectors y(j). For large values of,1
as the H6non map or the Lorenz attractor [8], n ly-y ) 12 /a the exponential dominates and the
larger than order 10 is usually unpredictable given function approaches zero. The polynomial softens
small machine or initial condition errors. the exponential decay while simultaneously provid- "

Prediction of the evolution of a point, y, on the ing a polynomial fit to the data for those values of
attractor in the reconstructed phase space may be de- Iy-y(i) I2/a that are small."
termined by looking at points in the temporal past A problem arises when f,(y, y(j), a) in our mapi
of y, as well as the evolution of points that are both depends only on the Euclidean distance of y-yU).
spatially nearby and on the attractor. Knowledge of We find that if a is small enough to accurately fore-..
where the neighbors of the point v have evolved i- cast points on the attractor then the Jacobian matrix'
as important as knowledge of where its temporal of F(y, a) which we will numerically evaluate on the
predecessors have been. This notion is present in data may be so small (due to the exponential term)
several papers dealing with the same general subject that we are unable to calculate Lyapunov exponents.',
as this note [9]. Our formulation of the concept is The term associated with a 2 provides for a non-zero
embodied in the explicit analytic formula we give for Jacobian when y is evaluated at some y(j) which hag
the map F(y, a). This aids in both the analysis of the no neighbors in the data set. A zero Jacobian would.
map's properties and its use in numerical work. With
the idea in mind of using information about the Arguments forthegeneral form herearegiven in ref. (10]. '
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be fatal, since we will eventually use F(y, a) to cal- C(X,a)-(N-L-)-
culate our Lyapunov exponents.

The predictor we choose for a point y(N+ I ) could -I L k2
in principle be just F(y(N), a). It could also be X . -1 -j+l),a).
F2(y(N- 1), a) or F'(y(N-j+ 1), a) for anyj. We (9)

are seeking a map, F(y, a), to reproduce the data
y(1).....y(N) as well as possible, However, it is also This alone would be a fairly standard least-squares
critical that the value ofy(J) be the result of iterates way of determining the parameters X and a. Other
of the map on y(j- 1), y(j-2), ... etc, that is, we are than the requirement that F(y, a) search phase space
approximating the dynamical system which gives us neighborhoods to determine where to map y, this
the y(j). With this in mind we have chosen as pre- minimization is familiar. In this paper we report re-
dictors a weighted average over L equivalent forms suits obtained by minimizing C(X, a) by searching "
of y(N+ I). L will typically be a small number, and various values of a, forfixed values of X. In our sub-
the weights X will be chosen to decrease as j in- sequent paper we discuss searches over both X and
creases in some manner consistent with one's con- a.
fidence in the reliability of FJ(y, a). We choose then The individual orbits of dynamical systems of the

L form y--F(y, a) which exhibit chaotic motion are
y(N+I)= , XjF(y(N-j+1,a). (6) sensitive to changes in initial conditions or roundoff

J-1 =error in machine calculations [ 1 ]. There are, how-

If F(y, a) were the exact mapping, then each term in ever, quantities that are invariant under the motion
this sum would be X)y(N+ I) itself, thus we require and are characteristic of the dynamical system that

gives rise to the data, y(n). The least-squares esti-
L mation of a by minimizing C(X, a) does not guar-SXJ=l . (7)

7-) antee that the resulting map F(y, a) will give the cor-
rect invariants. Even if C(X, a)=O we cannot

This choice of predictor is a natural extension to guarantee that F(y, a) captures the full dynamics of
the nonlinear situation of the linear predictive scheme the system that generated the data, since all data are

L subject to error, we are using a finite data set, and
y(N+) I J Xjy (N-j+ 1) (8) only predicting a few stevs into the future. In any

event, in practice, we are able to make C(X, a) small
discussed in many places [ 11]. By including itera- but nonzero. The fact that C(X, a) is not zero im-
tions of the map F(y, a) it explicitly embodies the plies that there is certainly no guarantee that the in-
idea that we are dealing with an iterated map or dy- variants will be reproduced by the map F(y, a). To
namical system. It also provides a "lever arm" on guarantee that the values of the invariants of the un-
predictions since it looks back not just one step but derlying dynamical system are built into the para-
many to see where P. given point y will evolve. Since meterized maps F(y, a), we seek the parameters val-
FJ(y, a) provides information on the evolution of ues that minimize C(X, a) subject to the constraints
the neighbors of the points which end up at y(N+ 1 ) that F(y, a) yield the correct values for the invariant
this "lever arm" is both temporal and spatial. Inter- characteristics. To implement this we need to iden-
estingly, using the optimization criteria we are about tify the relevant invariants, determine them from the
to discuss, this method also yields much better quan- data set in a manner independent of the least-squares
titative fits to the data than using the single term minimization, and give rules on finding them for any
F(y(N), a). map F(y, a).

In principle one would establish the parameters We are aware of two kinds of invariants for dy-
X= (XI, ..., XL) and a= (a,, ..., ap,) by minimizing namical systems [ 1 ]. Both are connected with er-
the cost function godic properties of the true underlying dynamics that

generated the data set. The first is the set of char-
acteristic Lyapunov exponents, A, A2, ... , AD. The
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second is the invariant density of points on the at- the full Lyapunov spectrum from data and from maps
tractor, p(y). F(y, a). I

We assume that when C(X, a) is near zero the map We now turn our attention to the second type of
F(y, a) is ergodic on the attractor. If this is true, then invariant, the invariant density, p(y). The invariant
the A"2P are given by Oseledec's multiplicative er- density of a map, F(y, a), is defined as
godic theorem (121 as the logarithms of the eigen- I M
values of p(y)6= D(y-F(y(I), a)). (15).'

[(DF "(y ( I))DF "I(y ( I) '12m (10) For an ergodic map (which we have assumed our,
as M-.oo, where the dagger denotes Hermitean con- map to be) p0y) is invariant in the sense that all ini-
jugate, DF(y) is the Jacobian matrix tial points y( l ) that are on the attractor yield the

same value for p(y). The spatial average of g(y), aft
DF(y) F,(y, a) (11) arbitrary function on phase space, is given by

and (g)= dDyp(y)g(y)"

DFM(y)=DF(F-I(y,a))..)F(F(y,a))DF(y). For ergodic maps g) is invariant under the action

Th2) of F(y, a), i.e.f d'py~gy
Ile A's are invariant in the sense that all initial points f yp).g)=<>p

y(l) that are on the attractor yield the same values = dDyp(y).,g(F(y, a)). (16)
for the A's. f

If only A "P is desired, then The invariant density determined by the data is

1 clearly given as
log{Tr[DFM (y)]} (13)

(y).. M= N JDLy-y(k)). (17)

gives a very accurate value for Af' as M becomes Nk.
large. Basically this is because Thus, (g)d. , is given by

D N

Tr[DFAy)]= E exp(MAo);exp(MAI) (14) 1d= (g[y(k)].

for large M. This rule for finding A -P from the map The second constraint we will impose on C(X, a)
F(y, a) turns out, in practice, to be easy to program is the equality of p(y),..p with p(y)d.,,. We cannot
and completely adequate for use in constraining the constrain the minimization of C(X, a) by the full
optimization of C(X, a). content of p(y), since it contains an infinite amount

Establishing the Lyapunov characteristic expo- of local information. However, we can choose some
nents from data turns out to be a delicate procedure specific functions g1Ly) which we deem important
for all but the largest positive exponent, A '" [13]. about the dynamical system and require (g1>,p=
This appears to be operationally the case whether the (g, d,.- as constraints. For this paper we report the
data comes from an experiment or is computer ten- rteW~s obt inm. by , --i ,  

--. ep -.

crated. Hence, we have chosen to restrict our atten- There is no intrinsic significance to this phase funo'
tion here to the largest positive Lyapunov exponent. tion, but it does have contributions from large values
Let us suppose 1111 has been determined from the of Euclidean distances on the attractor. Also it is not
data, y(n). The equality A,,' =1," forms one of the connected in any direct way with the function C(X,
constraints we will impose on the minimization of a) and, thus, contains information about the attraO-
the cost function. tor quite different from C(X, a).

It seems to us a matter of some interest to create An obvious question is what is the best choice of
reliable, efficient methods for the determination of moments, (g), to use to constrain the cost functioL',

404
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To answer this we expand p(y) in terms of some set For our predictor we took three terms:
of orthonormal functions ', (y) which are concen-
trated on the attractor, p (y) = X.. 1 B ,'(y). The re Y(I+1)=XF(y(I),a)+X 2 P(7 (I-I),a)
quirement that the v,Ay)'s be concentrated on the +X3F3(y(1-2), a). (21)
attractor implies that the number of these functions
needed to represent p(y) accurately (within the res- Recall that we chose to fix the X rather than vary
olution given by finite N) can be small. Thus the de- them in this note. To reflect our greater confidence
tails of p(y) can be transmitted in terms of a set of in the lower-order iterates ofF(y,a), we took X, =-0.8
functions "tuned" to the attractor and their coeffi- and X2 =X3=0.1. Similar values of the Xgive much
cients. One learns the functions from one data set the same qualitative results. In the work we report
and uses them as a basis set for future data sets. If here we have chosen the number of parameters a to
we knew the B , we would be able to reconstruct the be 4. We constrained the minimization of CX, a)
phase space average of any g(y) since over the a with A, and with the mean of the phase

function (g> so when both constraints are imposed
W Bwe have two free variables among the a. The powers

(g)= . B fd~y~vvy)g(y)]. (19) m3 and m4 in the F(y, a) were chosen to be fixed

during the minimization of C(X, a). We took them
The term in large parentheses is independent of the to be m3 = 4 and m4 = 5. A parameter search over the
dynamical system. It depends on the phase function Mk could have been done as well; but we have not
g(y) and the basis vectors only. done this.

The BM's are the moments (phase space averages) ,There is an important item which we were re-
of the eigenfunctions Vu(y) and constitute the op- quired to address in our work. It is quite general, so
timal moments to use in constraining the cost func- we discuss it and our solution to it before reporting
tion. In the larger paper which follows this note [ 7 ] on particular calculations. The data we are given lies
we show how the B=f dDyp(y) v(y) may be used on the attractor, indeed, it defines the attractor. The
to constrain the minimization of C(X, a). The key attractor is an object of zero volume in RD since its
is the choice of the V, (y) which we select as the op dimension is less than D. We have, thus, no infor-
timum Karhunen-Love eigenfunctions [ 14 ] of the mation from the data on the behavior of the map
correlation matrix formed by independent samples y--F(y, a) when y lies in most of RD. Our map must
of p.,.(y). These eigenfunctions are automatically contain some rule which takes points y that are off
concentrated on the attractor. the attractor and brings them onto the attracting set.

We have implemented the program outlined here Our class of maps F(y, a) does that by mapping
using "data" generated by the Hfnon map of the points that are off the attractor, which clearly have
plane (xi, x2) to itself, no neighbors among the datay(n), to the originy=0.

We have addressed this matter by translating the or-
x1(n+l)=l.0-ax(n)2 +x2(n), igin of the coordinate system in which the y(n) are

x2(n+l)=bx1(n), (20) given to lie well within ,Ia of some data point.
(.Which data point we chose seemed not to matter.)

with the familiar parameter values a= 1.4 and b=0.3. When the parameters a have reached values near the
.t-.,;#ng with data on x, (h), n= i, 2, ..., N+ I we optimum and that optimum is doing a good job of
constructed the two vectors y(n)=(x(n), tracking the data, this translation of the origin is
x1 (n+ I)) forn= 1, 2, ..., Nas our basic data. In units doing nothing. While we are searching the a, how-
set by the map itself, we found the minimum dis- ever, and are far from the optimum, this translation
tance between points on the attractor to be 2 10-' reinjects points mapped off the attractor by a bad
to 10-5 when N;* 500. We chose the parameter a in F(y, a) back onto or very near the attractor. This de-
our map F(y, a) to be about 100 times the square of vice, or an equivalent one, provides both stability and
this minimum. For large N this means that most logic to the parameter search and is certainly needed
points in the data set will hve some neighbors. Spe- for any D> 2.
cificaly we took a=3.4x 10- . If there were a way to probe the system producing

405



Vohune.133, number 8 PHYSICS LETTERS A 1OJuly 1989

the data, we could avoid this need for reinjection by from its value taken from the data by 0.05! This ac-
pulsing the probe and letting the system itself ex- tually was a general rule we saw in our fitting of F(y,
plore phase space off the attractor. The information a); namely, the smallest C(X, a) did not give good
we need would then be in the data set. The usual sit- values for the constraints, and a larger, though often
uation we anticipate is that the scalar time series x(n) not much larger, cost function was found by the con-
represents long-time behavior of the system and that strained optimum. This means that while the con-
only motion on the attractor is represented in the strained optimum will give a slightly worse point to
data. point prediction of future values of points in P'1, it

In our work with data from the Hhon map we be- will, by construction, give better global properties.
gan with N= 750. This was large enough to cover the Finally we imposed the equality of both the largest
attractor reasonably densely and allowed us to make Lyapunov exponent (A"P= l) and the phase space
calculations quickly. We also tried to choose N large average (W(g),,= (g>dz). The precise minimum
enough to give an accurate picture of the attractor resulting from the application of the search routine
but small enough that we could imagine ourselves NPSOL depends on the acceptable limits we put on
operating on a small data set we had been given. Our the satisfaction of the constraints. All minima were

* choice of N was partly motivated by our observa- in the neighborhood of C(X, a) =0.09. For example,
tions that the method we use to compute A I when requiring each of the constraints to be met to an ac-

* applied to the Hdnon map directly undergoes some curacy of 0.005, led to a cost function of 0.09082.
fluctuations for N much smaller than 400 and has Relaxing this to an accuracy of 0.01, led to a cost
settled down to a value A I= 0.408... after that. This function of 0.09063, which is essentially the same.
value is consistent with other determinations ofthis The parameter values shifted around in a common
Lyapunov exponent, so we.were confident we had neighborhood for all these limits imposed on the
not chosen too small a value of N. With this value constraints, indicating we were just moving around
of N, we searched the parameters a to minimize C(X, the same constrained minimum at various small dis-
a). Our search utilized the software package NPSOL tances. For constraints required to be satisfied within
115], which doei not search for global minima, so +0.006, the values of the a, werea,=0.940,a2 =l.21,
some variation of initial values of the a was needed
on our part. After some looking around we found a a3  0.0260, and a4=0-00188.

What is important here is not the specific set ofvery shallow minimum in the variable a2 near which

the other a, took the same values for large excursions values of the parameters a. Rather, it is that we are

in a2.The values of the parameters at the minimum able to find al's that meet both of our constraints and

were a, = 1.1 8 a2 = 607, a3=-0.0784, and that although the ai's that give accurate values of the

a4=0.0126. At these values, the cost function C(X, constraints are quite different from those of the un-

a) took the value 0.03967, while the Lyapunov cx- constrained minimum, they still give an acceptably

ponent A t was 5.95, rather than 0.408, and the value small cost function.

of the phase space average of g(y) was 6.18 rather We repeated this kind of calculation with a variety

than the value of 2.81 computed from the data. of values of N and on data sets generated with dif-.

Clearly we achieved a very good "fit" to the data as ferent initial conditions for the underlying H~non

far as the cost function C(X, a) was concerned, but map. For N= 1200 and N= 1700, for example, we

tC map F(y, a) at that set of parameters a had little report in table 1 the results of calculations precisely

to do with the dynamical system generating the data. along the fines just discussed. They are rather similar

Next we imposed only the Lyapunov constraint in character to the results for N=750 just reported

(A1mP=A 1 S) on the minimization of the cost func- and to the results for other values of N we explored.:,
tion. The parameter values found in our search were In the table we show the C(X, a) for both the con-
a, = 1.19, a2=0.816, a3=0.000764, and strained and unconstrained optimization. The val-
a4= -0.0121. At this point the value ofC(X, a) was ues of the constraints AI and <g> are shown for the
0,04175, which is still an excellent "fit" in a least- map both when those constraints have been imposed
squares sense. The Lyapunov exponent now differed and when they have not.

406



Volume 138,number8 / PHYSICS LETTERS A 10July 1989

Table I
Optimization results. C(X, a) (eq. (9) with F(y, a) ftom eq. (4)) is shown with and without invariant constraints. The following
parameters are used forall N X,=0.8, X ., X =O.1,.,1 =0.408.

N wS" C(X a) a, a2  a3  a4  I P  (g)""

750 2.81 uncons. 0.03502 1.18 607 -0.0784 0.0126 5.95 6.18
AI . 004175 1.19 0.816 0.000764 -0.0121 0.403 6.16
4, g) 0.09105 0.940 1.21 -0.0260 0.00188 0.406 2.82

1200 2.81 uneont 0.03090 '1.19 14.30 -0.0650 0.00912 2.72 6.24
A, 0.03113 1.17 0.677 -0.0645 0.00961 0.408 5.96
A,, g) 0.0851 0.966 -0.718 -0.00757 -0.00649 0.411 2.81

1700 2.90 unconst. 0.03444 1.16 -13.36 -0.0809 0.00150 2.50 6.48
A, 0.03894 1.17 -0.246 -0.126 0.00301 0.405 6.32
,. g) 0.0926 0.939 0.478 -0.0355 -0.00237 0.409 2.91

We have now demonstrated that using a predictor for the extraction of invariant quantities such as
of the form Lyapunov exponents from data. Finally the exten-

L sion of the methods demonstrated here to systems
y(N+ I)= F XF(y(N-j+ 1, a) with spatial degrees of freedom would be most in-

J"' jeresting. We plan to discuss many of these items in
with our class of mapping functions F(y, a) can give our own expansion of this short note [ 7].
excellent least-squares fits to chaotic time series data
on a strange attractor while simultaneously satisfy- We are most appreciative for productive conver-
ing constraints on those fits dictated by the geomet- sations with K. Bruckner, M. Freedman, H. Levine,
rical invariants which characterize that attractor. J. Theiler, and Bruce West about the material cov-
Furthermore, a straightforward least-squares fit to ered in this note. This work was supported in part
the data does not, in general, reproduce the dynam- under a contract with the DARPA Applied and
ical information on Lyapunov exponents and invar- Computational Mathematics Progmm, No. F 49620-
iant densities that are contained in the data itself. To 87-C-0 117 and in part under the DARPA-University
produce the correct value of the invariants we must Research Initiative, URI Contract No. N00014-86-
accept a larger cost function. This loss in least-squares K-0758. J.B. Kadtke wishes to acknowledge support
based predicted power is made up for by the built in of AFOSR grant No. AFOSR-89-0072.
quality of our predictors; namely, they will produce
the correct long-term statistical behavior of the dy-
namical system whose properties we are trying to
learn by the analysis of the original scalar time series. References
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We covmider the problem of prediction taxd system identification for time series having broadband "
power spectra that arise from the intrinsic nonlinear dynamics of the system. We view the motion
of the system in a reconstructed phase space that captures the attractor (usually strange) on which

the system evolves and give a procedure for constructing parametrized maps that evolve points in
the phase space into the future. The predictor of future points in the phase space is a combination
of operation on past points by the map and its iterates. Thus the map is regarded as a dynamical
system and not just afit to the data. The invariants of the dynamical system, the Lyapunov ex-
ponents and optimum moments of the invariant density on the attractor, are used as constraints on
the choice of mapping parameters. The parameter values are chosen through a constraiied least- "
squares optimization procedure, constrained by the values of these invariants. We give a detailed
discussion of methods to extract the Lyapunov exponents and optimum moments from data and
show how to equate them to the values for the parametric map in the constrained optimization. We
also discuss the motivation and methods we utilize for choosing the form of our parametric maps.
Their form has a strong similarity to the work in statistics on kernel density estimation, but the
goals and techniques differ in detail. Our methodology is applied to "data" from the Hinon map
and the Loreaz system of differential equations and shown to be feasible. We find that the parame-
ter values that minimize the least-squares criterion do not, in general, reproduce the invariants of
the dynamical system. The maps that do reproduce the values of the invariants are not optimum in
the least-squares sense, yet still are excellent predictorS. We discuss several technical and general
problems associated with prediction and system identification on strange attractors. In particular,
we consider the matter of the evolution of points that are off the attractor (where few or no data are
available), onto the attractor where long-term motion takes place. We find that we are able to real-
ize maps that give a least-souares approximation to the data with rms variation over the attractor of
0.5% or less and still reproduce the dynamical invariants to 5% or better. The dynamical invari-
ants are the classifiers of the dynamical system producing the broadband time series in the firs,
place, so this quality of the maps is essential in representing the correct dynamics.

I. INTRODUCTION nonneriodically on a strange attractor that lives in a
phase space of finite (and often small) dimension. Noix

A. General remarks does not evolve on a strange attractor and will occupy an
arbitrarily large number of dimensions. Hence to model

Analysis of time series from dynamical systems is an nonlinear chaotic systems as noise is certainly incorrect-
important issue in many different fields of engineering For these systems the source of the broadband spectrm
and science. The most common tool for this analysis is is !he intrinsic chaotic dynamics that underlies the tine
the Fourier (or other similar) transform of the data x(n) series.
to discover sharp line- ;- its power spectrum. Spectral Our focus in this work is on signals woh a substantial
identification lies at the heart of much of the work on broadband power spectrum which, since external noise is
linear systems to whirh time series analysis is applied." 2  absent or very small, represents the nonperiodic behavior
When one encounters a broadband power spectrum, the of a dynamical syszem whose orhits lie on P stra-!'ge!- -*
common asumption is that it represents extrinsic noise tractor. The idea, now rather well established, that such
and not characteristics of the signal. an object can have a small fractal dimension (and UM

It has become increasingly clear in recent years that govern the long time evolution of a system with far more
nonlinear systems exhibiting deterministic chaos will gcn- numerous degrees of freedom than represented by the di-
crate a time series whose power spectrum is broadband. rnenson of the attractor) is really the starting point of
Generically, dissipative nonlinear chaotic systems evolve our work.3 4

4; 1782 @1990 The American Physical Society



41 PREDICIION IN CHAOTIC NONLINEAR SYSTEMS: ... 1783

It is very important that though x(n) may be a long, are the coordinate elements of the y(n )'s, are nonlinear
quiet data set it is likely to have a very broad power spec- combinations of the local time derivatives and are fully
trum. Indeed, if the signal one is studying has a power acceptable substitutes for the usual phase-space coordi-
spectrum with substantial strong lines, one is well advised nates. This has been emphasized by Eckmann and
to recognize the implied sinusoids as the underlying Ruelle. 0

linear degrees of freedom and avoid altogether the labor With the y(n )'s and the embedding space in hand, we
we propose here. i ask here the ambitious question of how we can use the

It has been shown that in nonlinear systems that exhib- series of y(n)'s to predict y(N+I),y(N+2), etc.
it deterministic chaos one can determine from the obser- Equivalently, we can ask what is the evolution, under the
vation of a single dynamical variable the geometric struc- same dynamical system that produced the y(n )'s, -of a
ture of the many variable dynamics that produced the point y, that is on the attractor but not in the original
measured signal. 5- 10 The method that has developed for data set. We will have answered this question when given
the construction of the phase space in which the dynam- a data set y(l ),y(2),..., y(N), we have identified a "reli-
ics dwells is called phase-space retonstruction. The result able" map F from Rd to itself parametrized by
of this reconstruction is an embedding space of d dimen- a=(a1,a 2,..., ap) which takes us from y(n) to y(n + 1),
sions (d is an integer) in which one may observe the at-
tractor. One can view the evolution in thereconstructed y(n + 1)=F(y(n ),a).
phase space of the many dimensional dynamics in a quan-
titative fashion in the time domain.
In this article we describe both in outline and im- If we can establish a reliable F(y,a), then the evolution

plementation a program for extracting from the observa- of a point y in Rd that is not a member of the measur- "-
tions of this single broadband temporal signal quantita- ed data set would be y--,y1=F(y,a), y1-y 2=F(ypa)
tive predictions for the evolution of initial conditions F(F(y,a),a)=F 2(y,a), etc.
differing from the observed data points. We assume that Our first view of the data y( I ),y(2), .. . , y(N) is that it
once transients are gone the evolution of the system is on can be thought of as a pair of columns of vectors in Rd
a strange attractor with dimension dA, where d.A is gen-
erally fractional. If the evolution of the system is on such
an attractor, then the d-dimensional embedding space en- y( y( 2 )

closing the attractor should be sufficiently larger than dA y(2) y(3)
that all the geometric information about the attractor is
exposed in the embedding space. Mali and Takens's 6. 7  y(n) y(n +)
formal result requires d > 2 dA + I to assure one of a faith-
ful representation of the dA-dimensional attractor as seen
in the d-dimensional embedding space, but often, in prac- y(N-l) y(N),
tice, d > dA will do. The method of phase-space recon-
struction seeks to construct from the x(n )'s d. and our function F(y,a) comes from parametrically
dimensional vectors which, when embedded in Rd de. "fitting" the right-hand column of y(n+l) resulting
scribes the full dynamical evolution of the system. Sec- from the left-hand column of y(n ). Fitting the data then
tion II is devoted to the issue of identifying the correct suggests making a least-squares estimation of a so that
value of d from the data set. the cost function

For the moment suppose we have found d by one
means or another. We imagine measuring a single scalar
variable x at discrete time points x(n) for a N-2I d
n-1,2,...,ND. (Observation of several dynamical vari- Ya)= Im [Ym(n+l)-Fm(Y(n),a)]

ables from the system is even better, and serves to pro- R1 M -1
vide confirmation of the information on the deductions

'from observations of any single variable.) We can con- is minimized. Our approach differs from previous work
struct d-dimensional vectors y(n) in the embedding space in det,.iled tactics and in our imposition of important
by geometrical structure as constraints on the minimization

of the cost fin.ctin. "he aticls we have greatly relied
y(n)=(x(n),x(n +,r),x(n+,r2),.. .,x(n +r-,-)) , on for guidance and initial impetus in our research are

those by Farmer and Sidorovitch1 (we refer to this paper
for some set of time lags 1, 'T2,... ,I"d-1. Ile set of as FS in the following), Lapedes and Farber,1 and
y(n )'s, of which we have N=ND -d, capture the evolu- Crutchfield and McNamnara. 13

tion of the nonlinear system under observation as it Our main point, simply stated, is that we are not just
moves through the d-dimensional phase space. Familiar niaking a fit to data with a set of functions F(y,a). Rath-
phase-space coordinates are the time derivatives er, these functions evaluated along the orbit are to be re-
x(n ),dx(n)/dt,d2x(n )/dt 2,..., evaluated at discrete lated to each other in the manner of a dynamical system.
times. The data on x(n ) are acquired only at discrete This leads to a rather different view of the fitting func-
times and establishing the values of these derivatives is tions than the one usually taken in trying to match data
certain to be inaccurate. The time lagged x(n )'s, which to observations. It means that the function F(y,a) evalu-
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It is very important that though x(n) may be a long, are the coordinate elements of the y(n)'s, are nonlinear
quiet data set it is likely to have a very broad power spec- combinations of the local time derivatives and are fully
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it deterministic chaos one can determine from the obser- Equivalently, we can ask what is the evolution, under the
vation of a single dynamical variable the geometric struc- same dynamical system that produced the y(n )'s, -of a
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sions (d is an integer) in which one may observe the at-
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phase space of the many dimensional dynamics in a quart-
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formal result requires d > 2d A + I to assure one of a faith-
ful representation of the dA -dimensional attractor as seen
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struction seeks to construct from the x(n )'s d- and our function F(y,a) comes from parametrically
dimensional vectors which, when embedded in Rd de- "fitting" the right-hand column of y(n+l) resulting
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moves through the d-dimensional phase space. Familiar niaking a fit to data with a set of functions F(y,a). Rath-
phase-space coordinates are the time derivatives er, these functions evaluated along the orbit are to be re-
x(n ),dx(n )/dt,d2 x(n )/dt2,..., evaluated at discrete lated to each other in the manner of a dynamical system.
times. The data on x(n) are acquired only at discrete This leads to a rather different view of the fitting func-
times and establishing the values of these derivatives is tions than the one usually taken in trying to match data
certain to be inaccurate. The time lagged x(n )'s, which to observations. It means that the function F(y,a) evalu-
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ated on the data vector y(n) is required to do more than metric mapping. Straightforward least-squares
reproduce y(n+l) as accurately as possible. F(y,a) zation does not accurately reproduce these invarian
must also be a function which when iterated will repro- Thus one must perform a least-square minimization
duce y(n +2) after two applications to y(n) and y(n +3) ject to the constraints that F(y, a) accurately produce ti
after three, etc. The notion of F(y,a) as a dynamical sys- Lyapunov spectra X1,XL2,..., ,Xd and the invariant d
tern also leads to modifications of the cost function. The ty p(y). This paper is devoted to explaining in detail h
cost function should reflect the fact that iterations of one implements the idea just stated.
F(y,a) also yield points on the orbit. Furthermore, under
our approach geometrical properties of the dynamical
system given by F(y,a) are used to determine the success B. hong maps and predictor.
of the fit. It is not just the function's ability to reproduce
in a least-squares sense the observed data that is impor-
tant. The data contain invariant information that is Assuming for the moment that we have successfully
essential for a full description of the geometrical struc- embedded the data x(n) in Rd by creating d-dimensional
ture of the attractor that it evolves on. Our key observa- vectors y(n ), n = 1,... , N. We need to choose a class of"
tion in this article is that, in general, least-squares fitting parametrized mappings, a cost function to minimize, and.
alone does not produce a map that captures the invariant a means tw impose the constraints on our minimizatiom
characteristics of the attractor described by the data The maps must have some way of fitting the data by,
y(n ), n = 1 .... , N. One must calculate from the data as closely reproducing one data point from the previous one
many of these invariant quantities as possible and then by y(n + 1 )=F(y(n ),a). Our maps are required to "look
impose them as constraints on the fit. In this way we em- around" at the behavior of the phase-space neighbors
phasize the fact that one is creating a dynamics and not the point y(n) and predict forward according to how a
just a fit to data. The product of our minimization of the cluster of phase-space neighbors, regardless of their tem-
constrained cost function is a mapping F(y,a) of Rd to it- poral sequence, are moved forward in time. The idea
self which is not only reliable in that it reproduces the here is that one may use knowledge of the behavior of It>.
given data set by having a small cost function, but is also cal regions of phase space as well as past points on an or-
representational in that it has the same geometric invari- bit to determine where a point will be mapped in the tem-
ants as the underlying dynamical system. The methods poral future. The maps we choose must then be sensitive
for identifying those invariants and utilizing them as to their neighborhood in phase space and must inquire
classifiers for the dynamical system is a matter of some about the fate of any spatial neighbor under the map
importance in itself. without concern of its temporal arrival in the neighbor-

The invariants are properties of the function F(y,a) hood. The map will then try to take any new point y and
viewed as a dynamical system which maps Rd to itself. map it forward to some weighted average of its neigh-
We will concentrate on two kinds of invaiiants. One kind bos' forward evolution.
of invariant, the Lyapunov characteristic exponents We take our mappings to be of the form
' 2, ,Xed, describes the expansion or contraction of

phase-space volumes under the iteration of F(y,a). N0-17 N-I
Lyapunov exponents are invariant under smooth changes F(y,a) y(n + I )g(y,y(n );a), () /
of coordinate and are independent of the initial condi- . .
tions of the orbit one follows on the attractor. The -.
second kind of invariant is the density of points on the at- where g(y,y(n );a) is near 1 for y=y(n), and vanishes
tractor p(y). It captures global features of the frequency rapidly for nonzero ly-y(n )J; the vertical bars represent
with which orbits visit various portions of the attractor. some norm, in our case Euclidean, in Rd. F(y(k ),a) will .,
The density is a different kind of invariant than the then be quite close to y(k + 1 ). I.:',,i

Lyapunov exponents. Its integrals with smooth functions This type of mapping is strongly suggestive of the form-
G(y) are unchanged under operation with the mapping used in the statistical literature under the name of kernel
function which underlies the dynamics y(n )--y(n + 1), estimation or kernel density estimation. An explicit re-;

cent example that illustrates the similarity is found ift

f ddyp(y)G(y)= fddyp(y)G(F(y,a)). Ref. 20. Other useful discussions of this method applied .#A
to various problems are to be found in Refs. 21 and 22;
our attention was directed to this similarity by Farmer .

It too is independent of the initial conditions on the or- and Sidorowich.23 We do not claim to have a better
bits.I°A'O 1 19  method for choosing our function g than those in the '

In this paper we find the parameters a in F(y,a) by literature, but our motivation here does differ from all the
minimizing a cost function subject to certain constraints, citations except Rice. 20 Our constraints on g are also
The constraints are chosen to insure that iterations of the different, but could be modified. For example, the in- -
mapping function F(y,a) give rise to values of dynamical tegral of g over y need not be unity, nor do we require '.
invariants which are the same as those indicated by the that g be positive. We will return to a discussion of
experimentally measured data set y(n). In this way choices for g in our summary in Sec. VI.
essential geometric information about the particular at- Our choice here for g(y,y(n );a)-one among many, of
tractor on which the data live will be built into the para- course-is this:
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P
xp.ex[-ly-y(n )J'/i a, +a2y(n ).(y-y(n ))+ , ak( Jy-y(n )2/a)'

k -3 k -s (2)
g(yy(n);a . I m 1

... I exp[-ly-y(n)flo, [ J a(ly-y(n)l/
. . ,.. ,.,,k-

* .* .,. :S -

The parameter space a is • P dimensional, evolving points y(n) into new points y(n + 1), we should
a-(a 1 ,a ,... ,ap). a is a fixed parameter that provides consider as.,ng the map to reproduce accurately from
a scale we can use to determine which points in the data y(n ) not only the "next" point y(n + 1) but, via iteration,
set are "close" to y. The mk's are also fixed at various a sequence of points y(n-+),y(n+2),y(n+3),
values. We could treat both a and the mk's as parame- .. ,y(n +L ) up to some L beyond which we simply do
ters to be optimized in the same sense as the a's. Howev- 'not trust the accuracy of our algorithm F or of the
er, we choose not to do this in our work; not for any fun- machines we use to compute the future y's.
damental reasons, but because we wished to explore other This suggests the predictor for future points to be a
issues and wished to keep down the size of the parameter linear combination of iterated powers of the map F(y, a),
space over which our minimization searches were per- L
formed. y(m +1)= I XkFk(y(m-k+1),a), (3)

The weight function g(y,y(ir);a) which we use was ar- k-1
rived at after some experimentation. It, as do many other where Fk is the kth iterate of F as described above. If
choices, certainly satisfies our general requirements. F(y,a) were the exact mapping, then each term in the
These requirements include the following: sum over k would be Xky(m + 1). Thus we require

The function is sensitive to the presence of near
"neighbors" in phase space. Only points y(n) within a I X k =I
distance from y of order V make any sizable contribu- k XA

tion to g(y,y(n );a).
When a-o0, g(y,y(n );a) becomes essentially a The X's weight the various iterates of F and are used to

Kronecker delta and the point y(n) is mapped precisely determine which iterates of F we believe are the most ac-
to y(n + l). curate. Typically, one would require Xj >X.+I to indi-

It is easy to differentiate both in y and in a. These cate that the lower iterates of F are believed to be more
derivatives are important in the minimization of the cost accurate than the higher iterates. This predictor is a nat-
function using our methods, and having explicit expres- ural generalization to the nonlinear problem of the com-
sions for the required derivatives in either of these in- mon linear predictor
dependent variables makes the optimization routines run L
much faster. y(m+l)= I Xky(m-k+l),

In the function we have chosen it is easy to retain k-1
many parameters all of the same general form, thus as the with the clear differences associated with the iterative na-
number of constraints on the optimization of the cost ture of the map F(y,a).
function is increased, the pattern of our searches remains This predictor [Eq. (3)] combines both past temporal
the same. information from times m -k + 1; k = 1,2,... L and in-

The essential function which senses neighbors, namely formation from all the phase-space neighbors of the orbit
the exponential, can easily be replaced by other choice., points y(m -k + I) because of the structure of F(y,a).
such as those in Table 3.1 of Silverman's monograph.2 ' The combination of spatial and temporal information
The general form of our arguments goes through then provides a significant "lever arm" which permits Eq. (3)
without modification. to quite accurately make forecasts about the forward evo-

By virtue of the term involving a2 in the numerator, lution of points y in Rd. By utilizing the phase-space in-
this form of g(y,y(n );a) allowed us to satisfy constraints formation in F(y,a) at each temporal step we efficiently
set by the Lyapunov exponents with numerical stability tap properties of the full data set.
and accuracy. The denominator serves as an approxi- The cost function associated with this predictor is
Mate CuO1cr for ic numbcr of neighbors of the point y, -l L L
so the numerator works less to produce the required aver- jly(n + 1)- XkFk(y(n -k +1 ),a)12

age for the forward prediction of the point y. The pres- , L k-Ience of the denominator assured us of numerical ease in C(X,a)
making the parameters in the map F(y,a) meet our re- I Iy(n)'y(n )12
quirement of producing an average over neighborhood n -
points in projecting forward in time any phase-space (4)
point. This made the numerical algorithms we use much

more efficient and accurate. This kind of cost function will automatically contain in-
The choice of cost function is also rather much up to formation on the Lyapunov exponents which themselves

us. Since we are to think of F(y,a) as a dynamical system are expressions of the dynamics as iterations of the map.
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Some information on the invariant density function on X from the data to their expression in terms of paramwe'
-the attractor is also contained in this improved cost func- ters a in F(y,a) will constitute our first set of constraints

tion.2 on the minimization of C(X,a).
Another major consideration to us is the great Section IV contains our discussion of the invariant dis.'

difference in the coordinate scale of' various attractors. tribution of points on the attractor. In principle, this
The numerator of the cost function; (Eq. (4)] is the residu- quantity, which we called p(y), contains an infinite
al of the mapped function summed, over the entire trajec- amount of information on the dynamics. A finite dat seta
tory, and hence gives a measure of the sum of the abso- y(n) restricts the resolution we have of this information.
lute errors over all the mapped points. Since the absolute We have chosen to express this finite amount of informa- -
error is obviously dependent on the macroscai of the at- tion in terms of the projection of p(y) on a set of dual
tractor, it is more informative to rescale the final cost basis functions which are a complete set in R. Keeping
function value in some manner which reflects error. In a finite number of these functions is equivalent to a finite
our samples, the scale of the attractor of the H&non at- resolution view of the complex structure of p(y). 19

tractor is on the order of unity, while that of the Lorenz One of our contributions in this work is a scheme for
attractor is of order 100. Hence some form of rescaling choosing the dual basis functions "tuned" to the struc-
of the cost function became desirable in order to have a ture of p(y). This allows us to represent our finite resolu-
relative measure of comparison between two systems with tion of p(y) by a small number of terms in an expansion
different macroscale. We chose a normalization in the in the optimal basis functions.25-21 By projecting the
following straightforward manner: we simple summed p(y) determined from the data onto these basis functions,
the magnitudes of the position vectors of all the points on we can determine the coefficients of the expansion of p(y)
the attractor, and retained this value as a constant. Ab- in this basis. Similarly, we can project the p(y) deter-
solute values for the cost function after normalization by mined from the map F(y,a) onto these basis functions ;
the denominator in Eq. (4) give a more sensible relative and determine the expansion coefficients of the map. '.

measure of the error of our prediction function F(y,a). Equating the coefficients one determines from the data to 3
We note that FS suggest forecasting the evolution of a the ones determined from the map constitutes our final "

point y by looking around at the neighbors of y among constraints on the minimization of C(X,,a). Further- +
the data set y(n) and observing where these neighbors go more, we show how the components of p(y), in this basis,
under one iteration of the underlying map taking the are the elements of the eigenvalue unity eigenvector of a
y(n ) to y(n + I). They determine the future of the new finite-dimensional matrix constructed from F(y,a) and
point y by an interpolation involving the future of its the dual basis functions. "
neighbors. Our mapping function Eqs. (1) and (2) does In Sec.'V we describe our implementation of the con-
precisely this as indicated. All points in the data set are strained minimization program2 for two model systems:
given some weight in the future of y, but if g(y,y(n);a) the Hhnon map of the plane to itself and (2) the Lorenz
falls rapidly for large ly-y(n)l, as We shall always system. In each case we numerically generate a data set
choose, only members of the data set y(n ) near y, i.e., the of x(n)'s. We then discuss in some detail our experience
neighbors, play much of a role in its future. Our F(y,a) in establishing the dimension of the space in which the
in that sense is an analytic formulation of the FS idea. dynamics is embedded. We also discuss the calculation
More or less weight can be given to the near neighbors by of Lyapunov exponents, and aspects of the invariant dis- .-
different choices for the function g(y,y(n );a). The tribution on the attractor from the y(n )'s. Finally, we
Gaussian we work with could be replaced by a Lorentzi- carry out the constrained minimization of the cost func-
an or other choices which weight neighbors more. tion and indicate how well our parametrized mappings

are able to perform in predicting orbits other than those .

C. ladants in the given data set.
In this paper we are attempting to describe a method

With a wap and a cost function, Eqs. (1), (2), and (4), of analyzing experimental data. For such a situation we
we are ready for the constraints. Section III is devoted to do not know a priori the correct embedding dimension, .'
a discussion of Lyapunov exponents. In it we first turn to the correct Lyapunov exponents, or the underlying
the extraction of the Lyapunov exponents 1,'2, -.. , ? dynamical system that can be used to generate the
from the data y(1),y(2), ... ,y(N). We do not add any- correct invariant distribution. Yet we have used data sets '1 '
thing but our own experience to that of many workers gencrated by a dynamical system that we know. We have
wlV have explored the calculation of X/ from data. We used known systems for two reasons. The first is that it
attempt to convey to the reader an overview of the avail- provides a simple way to obtaii large, noise free, data
able methods for determining Lyapunov spectra and a sets. Second, it provides a way of measuring how well ex-
sense of their reliability. Therefore that portion of Sec. isting techniques are able to determine the embedding di-
III may be skipped by persons with experience. We in- mension and the Lyapunov exponents. In order to simu-
clude it here since determining the XI's is an essential step late experimental systems we treat the data set as having
in our plan for determining F(y,a) and we have chosen to come to us from an unknown source. Thus we do not use
comment on how we have done it rather than refer the any of the known properties of either the Htnon or the
reader to the literature. Of course, we do that too. That Lorenz system.
established, we discuss how to determine these numbers An issue of some importance we do not address in this
in terms of the F(y,a). Equating the numerical values for paper is that of extrinsic noise which could contaminate



4 PREDICTION IN CHAOTIC NONINEAR SYSTEMS: ... 1787

our signal x(n). This is not a dismissal of this important making all other lags multiples of r. The question of
issue but an attempt to separate out the matters of what is the best way to choose 'r is still open. In a heuris-
efficiency and utility of our plan for prediction on strange tic sense, if r is too small, then the coordinate at x(n + r)
attractors from issues concerning the practical degrada- and x (n +2,r) represent almost the same information.
tion of our procedures by external noise. An equally im- Similarly, if r is too large, then x(n +-r) and x(n +2r)
portant issue is the quantity of data available. The deter- represent distinct uncorrelate .,escriptions of the embed-
rination of Lyapunov exponents. is very difficult for short ding space.
data sets. As we have stated above the resolution of p(y) For reasons of consistency and ease in calculating
is determined by the number of data points available. As Lyapunov exponents (cf. Sec. III) we adopt the following
the dimension of the phase space increases, the amount of practice. We take the original scalar measurements and
data necessary for accurate prediction increases dramati- calculate its autocorrelation function
cally.- We will return to the implications of noisy and/or 1 T.
short data sets for our prediction procedure in later -- f x(t+')x(t)dt.
work. For now we assume that we are given essentially T o

noise-free, arbitrarily long time series x(n). We then choose T to be approximately -L to T', the time
It is our expectation that our experiences with the two associated with the first local minimum of the autocorre-

systems listed above will give us the ability, in many in- lation function. We find that this system, although some-
stances, to construct models in the form of our what arbitrary, works well in practice and provides a sim-
parametrized mapping F(y,a) which allow prediction ple and systematic way of determining -r. We set" to uni-
and control of the underlying nonlinear -dynamical sys- ty and thereby establish a time scale for the problem.
tern producing an observed signal x(n). The details of The data x(n), n = 1,... ,ND thus become measure-
the F(y,a) for a specific application should reflect the ments of the scalar variable separated by a constant time
known features of the physical or other phenomena giv- step r-.
ing the signal. It seems too bold, if at all possible, to sug- We then form d vectors
gest any general rules for choosing forms for F(y,a).
This is sure to be a rich area for experimentation and our y(n )=(x(n ),x(n + I), ... ,x(n +d- 1)) (5)
own choice will be motivated by considerations we shall for n = 1,2,..., N=ND -d in a space Rd capturing the
defend in a later section and slightly alluded to above. geometric structure of the attractor on which the orbits

The matter of noise will be addressed in a future paper. x(n) lie. To establish d we need some characteristic of
Our methods for dealing with noise follow those outlined
by Fuller2" and seem similar to the ideas of Sidorwich. 0  the attractor that becomes unchanging as d becomes

large enough, thus indicating that the attractor can be
embedded in Rd. The usual Hausdorff or other dimen-

II. CHOICE OF AN EMBEDDING SPACE sions of the attractor are such characteristic quantities.
Numerical calculations of the Hausdorff dimension

In this section we illustrate how one can determine the dA (N,d) of an attractor may depend on the finite length
phase-space embedding dimension d fromat e scalar time of the data set N and/or the embedding dimension d. For
series x(n), n = ... ,ND. We assume that the data set N large enough dA will become independent of d when
is long enough that we need not. be concerned with sta- the attractor is properly embedded in Rd. Operationally
tistical issues about the numerical accuracy of the quanti- one increases d until dA remains constant and identifies
ties we consider below. We also assume extrinsic noise is the inimum d wher d A  r a es s t an din g
absent from the x(n )'s when we receive them. Matters of the minimum d where dA "saturates" as the embedding
short and/or noisy data sets, while critical in all applica- dimension.
tions, are addressed only peripherally in this paper. In fact, we, along with numerous others, do not recon-

Following the work of Packard et al.5 and MahI6 and mend the computation ofdA, however geometrically ap-
Takens 6

,7 and the developmental work of numerous oth- pealing it may be, because it is too demanding of comput-
ers we seek a set of lagged variables x(n ),x(n +,t), er time. We suggest, and we use, the properties of the

x(n +2), , +correlation function D(r), proposed by Takens32 and by

in a d-dimensional space in which the dynamics produc- Grassber er and Procaccia,3 which is much easier to

ing the x(n )'s is fully captured or embedded. compute. In terms of the data vectors y(n) this is

The choice of lags 'a is not a well agreed upon defined to be
, . 43 ,k •U 13 0"13r accuracy arid -flii-"e WWII2Nh

1_9 (r-jytj)-y(i)D ,
which the d-dimensional vectors that result from a par- D (r,Nd)= (N
ticular choice of ra's represents the phase space in which
the attractor resides. If the underlying system were a i:*j (6)
differential equation and a scalar variable x(t) were mea-
sured at discrete times x(n )=x(to+nAt), then we are by where O(x) is the Heaviside function e(x >0)= and
the choice of lagged variables trying to find a discrete re- O(x <0)=O. The vertical bars represent some measure
placement for the usual phase-space coordinates of distance in Rdwe use the Euclidean norm, but that is
x(t),dx Idt ... ,dd-lx/dtd - . Mai16 and Taken's re- only a convenient choice. This correlation function
sults indicate that, in principle, any choice of lags 7,a will counts the points of the attractor within a distance r of
do. We adopt the practice of choosing a single lag r and each other. Thus it possesses much of the same geometri-
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cal content as the Hausdorff or other invariant dimension d
attributes. d

'... For N large enough the behavior-of D(r,N,d) for 01
, small r becomes independent of N. As one would expect -

from scaling arguments about fractals, as well as observa- 001.
tionally,DrNd) is seento takethe form.

* D(r'N'd)=4(rd)r . I"., "" 00

for small r and large N. 35 "- 2
We will identify as the embedding dimension that value Mot

of d where the structure in D(r,N,d) becomes indepen-
dent of d. In this regime it is sufficient that D(r,N,d), ""* I
becomes independent of d over a range of r near r-*O, 0000 1

and large N [r=0 in a finite data set always gives strictly r
zero for D(r,N,d) and is an uninteresting limit]. '"1

To illustrate the use of the correlation function as an FIG. 1. D(R) vs r for the Hinon map. yj(n)=(x,(n),
embedding dimension discriminant we have calculated xI (n + 1)) for 4500 points.
D(r,N,d) for very long time series taken from the two vvectors Y(n )= (x(n ),x j~n + l)), we rc nt ut h

eapewewill be woknweh nti apr i hexaompw e lae wokig withsinthslpaper:,e figure seen in Fig. 2. This is, as should not be surprising nt N: s
H*non map of the plane to itself,3 ' in this simple example, a rotated form of the H~non at-

xl(n + I)= 1.0-ax(n )2 +x 2 (n) , tractor. The usual display of the H6non attractor is ob-
(7) tamined by plotting (x,(n),x 2(n)) for our data. Since

x 2(n+l)=bx(n) , x1 (n) is (l1/b)x 2(n+l), the coincidence of these plots is

with conventional parameter values a= 1.4 and b =0. 3, certainly not remarkable, Our goal in presenting this
and (ii) the Lorenz system of three autonomous kind of detail is as a guide to what one might expect in
differential equations 37  more complicated examples rather than as revelations

about the Hinon map.
dx (t) Next we turn to the Lorenz equations. Once again we

dt =c(x 2 (t)-x 1 (t)) ' chose initial conditions in the basin of attraction and
dX2(t solved Eqs. (8) with a straightforward fourth-order= x1 (t)x3(t)+rx1 (t)X 2 (t), (8) Runge-Kutta ordinary differential equation (ODE) solver

dt with a fixed time step. After discarding the first 50 time
dx3 (t) steps as transients, we recorded x1, x2, and x3 for

=x1 (t)x 2(t)-bx3 (t), N=4500 corresponding to many natural cycles of the or-
bit around the attractor. From each of the three data

with parameter values o-16, b=4, and r=45.92. sets we formed the d vectors as in Eq. (5) and with them
For the H6non map we took an initial condition lying evaluated the correlation function D(r,N,d) for

in its basin of attraction and iterated the map 4550 times. d= 1,2, ... ,5. The D(r,N,d)'s for y1(n ) data are shown
The first 50 iterates were discarded as representing tran-
sient behavior, while the last 4500 points of xI(n) and
x 2(n ) were then used to make d vectors

y(nu)=(x(n),x(n + 1),... xi(n +d - 1)) 1.00

fori=I or2. For d=1,2,... ,5 D(r,N,d) was comput- 0.50 ,, . *'

ed using an efficient code developed by Theiler. 34

For y 1(n) data these D(r,N,d) are plotted in Fig. 1. A 2 0.oo
similar plot was generated for Y2(n), but is not + / ,.\ .:'t"/ ". '
shown. Because of the simplicity of the connection . 04f / ',
x 2(n + I)=bx, (n) in the ---o, map, ,h6se iwo views of
D(r,N,d) are really redundant. However, in the spirit of /
treating each data series as having originally come to us -1.00
from a source whose underlying dynamics is unknown we
performed both calculations. -1.50

While a cautious and careful observer might say the
embedding dimension for the y,(n) data would be d=3, ,we fel s fe n co cludng rom hesefig res hat =2. -2.00 ... .............. .............. ,- .......... r,
we feel safe in concluding from these figures that d2. -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50

Computations with N greater than 4500 support this con- x(n)
clusion.

Further, if we take the xI(n) data and plot the two- FIG. 2. H.non attractorx,(n) plotted against x(n +l).
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in Fig. 3. An embedding dimension of d=3 is fairly
clearly a safe choice for these data. A bolder choice
would have been d=2. Since it is known that the Haus- 20.00
dorff dimension of the Lorenz attractor is just above 2 in
this regime of parameter space, this would have been a 10.00
convincing, Although incorrect, choice. The message
here is that choosing d too large entails extra subsequent -
computation, but no loss of information on the attractor. 0.0

It is probably safer to live with a d one dimension too +
large as a general matter of care. We thus choose d =3.
The results of the Y2 and Y3 data are not shown. As with
the Hnon example the results of Y2 and Y3 are similar to
those of yl. The fact that the Yl, Y2, and Y3 vectors for 20.00
the Lorenz data (y, and Y2 for Hinon) yields similar re-
sults is to be expected since all three measurements -30.00

evolve on the same attractor.
Next we plot the points y1(n)=(x1(n),x,(n+l), -4o.00

x 1(n+2)) in the three-dimensional embedding space. o20s(66 ... 0 50 0.00 5.0 1xno).0 M5

These are shown in Fig. 4 as a projection on a plane cos( a )*x(n) + s.in( a )*x(n+I)

with normal vector ^n=(cos0 1 (n)+(sin60i*(n + 1) FIG. 4. Lorenz attractor created from x,(n) data. The pa-
+0i,(n+2) for 9=1.31. We note the similarity be- rameter values are r =45.92, b =4.0, and a=16, while the pro-
tween Fig. 4 and the well-known shape of the Lorenz at- jection angle is 0= 1.31.
tractor. Thus the method of phase-space embedding reli-
ably reproduces the Lorenz attractor. For the two exam-
pies we have used the reconstructed attractor is similar in is a diagnostic tool. While the details of the small r be-
appearance to the attractor generated by the "true" un- havior D(r,d)-r'V4(r) contains important information
derlying equations of motion. In general, the recon- about the dynamics, we do not focus on that here.
structed attractor will not have this visual similarity. Indeed, we are quite happy to accept other diagnostic
However, the reconstructed attractor will contain all of tools in its place.
the important invariant information as the true attractor. I
The difference in visual shapes is the result of a nonlinear m. LYAPUNOV CHARACTERISTC
change of variables between the true dynamical variables EXPONENTS-FROM DATA AND FROM THE MAP
and the reconstructed variablcs.

We close this section with a summary note reminding In this section we discuss how one determines the
the reader that our use of the correlation integral Eq. (6) Lyapunov exponents that govern a dynamical system.
has been to establish an embedding dimension d in which First we discuss how to extract them from an experimen-
to view the system attractor described by our time series tal data set and then from our mapping F(y,a). By
x(n). We chose D(r,N,d) because it is familiar, easy to choosing the parameters a in such a way that F(y,i)
compute, and has a clear geometrical meaning. For us it yields the same Lyapunov exponents as the experimental

data set, we are forcing a constraint on F(y,a) that is not
explicitly required by minimizing the cost function given
by Eq. (4). This local constraint should improve our abil-
ity to predict the short-term (and possibly long-term) evo-

to -lution of points that are not in the data set, but near the
attractor. Certainly points outside the basin of attraction
of the attractor we have observed in the original data set
will not evolve according to our F(y,a).

Rather than writing our own computer program, and
,o"i d -thereby become embroiled in the controversy of what is

the best way to determine Lyapunov spectra from an ex-
perimental time series, we have chosen to use methods

d - 2 d - S that have already been proposed by two different research
groups. By comparing the results of both methods we

110 hope to improve our confidence in the spectra given by
each of them separately. The first method we shall report

to" . .on was developed by Eckmann et al3 8 The second
0.001 0.01 0.2 ' method was developed by Wolf et aL39 Finally, we will

r show how we calculated the Lyapunov spectra from our

FIG. 3. D(r) vs r for the Lorenz equations, yi(n) for 4500 mapping F(y,a).
points and embedding dimensions d = I .... 5. For this case The choice of an appropriate data set for use in either
r=45.92, b=4.0, and a=16. the Eckmann et al. or the Wolf et al. method is some-
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thing that cannot be overstressed. As stated in Sec. I the dimension of the embedding space, although this is p
time lag r between successive measurements of the ably an overestimate when d is 4 or more.

.-,dynamical variable must be appropriately chosen, if one The first dynamical system for which we present mo.
wants optimal results. suits is the Hinon map of the plane given by Eqs. (7). We.

A. Eckmm .Kmporsta.Ruelle-Cliberto et used a data set with N=-10000 entries. The results ame
shown in Fig. 5 and Table i. Ai one can see, the numeri.

For "-e Eckmann et al. method the PORTRAN source cal experiments accurately predict the accepted value of
code we used when performing our numerical experi- the positive Lyapunov exponent 1 --0.418. Although
ments on the dynamical systems denoted in Sec. II was for M = 1 case the computer code produced a reason.
provided by the authors of Ref. 38. It assumes that the abl zcurate prediction of the negative Lyapunov eit.
input is a string of positive integer data whose sampling poncnt, the code, in principle, will not yield accurate
rate is r. [The temporary conversion of the data set values of the negative or zero Lyapunov exponents. This
x (n ), n = 1, ... ,ND to positive integers for the sake of fact is born out in the M = 2 case (which is not shown).
the Lyapunov calculation should not be a difficult Furthermore, we know of no method that will produce
matter.] The code reads the data set and embeds it in a negative Lyapunov exponents from an experimental data

d-dimensional space in the manner specified in Sec. II. set. Since we are unable to reliably determine the negaea
The result is a set of N=ND .data vectors tive Lyapunov exponents from the data, we will not con- .

y(n)=(x(n),x(n+1),. . .,x(n+d-l)) where we have strain F(y,a) to reproduce the negative values of the
normalized r to unity (cf. Eq. (5)]. It then chooses an ini- spectra.
tial y(n ) and finds all neighbors of y(n ) within a radius r. It should not be surprising that we are unable to deter- '.
These points, as well as their forward images, are used to mine the negative Lyapunov spectra using our data sets. 4
construct a linear mapping T from time n to time n + 1. We have assumed that the data describe motion on an at- ".
The Lyapunov exponents are related to the eigenvalues of tractor. The negative Lyapunov exponents indicate how
the successive iterates of the map T. For a detailed dis- points in the phase space that are off the attractor get
cussion of the algorithm we direct the reader to Ref. 38. onto the attractor. The portion of the data set that might -

The Eckmann et al. method assumes that the embed- reveal how points off the attractor get to the attractor is
ding dimension d is related to the number of Lyapunov the initial transient. This transient is typically very short
exponents via the rule d = (dm -1 )M + I, where d, is the (sometimes as few as 10 time steps -r) and is usually dis-
number of Lyapunov exponents and M is a positive in- carded or otherwise unavailable.
teger. By allowing d, and M to range over various A relateo issue to be addressed is that the code pro- 4
values a wide range of embedding dimensions is used. duces dm exponents regardless of the actual number of
We remark that the reader will recall that in Sec. II we Lyapunov exponents that govern the dynamics of the
established a method for determining the minimum
embedding dimension d. The data vectors y(n) are as- I V
sumed to live on some attractor that occupies some por-
tion of Rd. It is a numerically difficult exercise to calcu-
late Lyapunov exponents from data. Thus it is necessary ... .. k .-.- ..
to examine a wide range of possible embedding dimen-
sions d. It is our experience that the calculated values of 0 -
the exponents converge onto their correct values as d is
increased above the number specified by methods in Sec.
II. We report numerical experiments for d,, in the range
between 2 and 9 for M = 1,2. (We remark that M = I re-
covers d=dm, while M=2 is slightly below the Takens
and Mal1 limit.67) In all of our tests we iterated the
tangent map T 2000 times before evaluating the ,
Lyapunov exponent.

To get a feel for the proper densities of points on the -2
reconstructed attractor, it is useful to use diagnostics 0 2 4 6 8 10 .1

such s_, . ..y, a histogram €of the numbtrer of neigzbor-" Cal- 4..
ling within a range around the smallest nearest-neighbor FIG. 5. The results of calculating Lyapunov exponents by
distance on the attractor. If the density of points on an the Eckmann et al. method for Hinon data. The horizontal
attractor is quite inhomogeneous, much higher mean axis is d,,, the assumed dimension of the dynamical system that
point densities are often necessary to insure.that most produced the data set. Thus the method will produce d,.,
points have at least a few nearby neighbors. Often a use- Lyapunov exponents. The vertical axis contains the numerical
ful diagnostic is simply to plot out the reconstructed at- values calculated for the d. different X's. The two horizontal
tractor, and visually obtain an intuitive feel for how lines are the known correct values for X =0.418 and X= - 1.62.
homogeneous the point density is. As a general rule of The method relates d, to the embedding dimension d via
thumb (inspired by Wolf et al.), we find empirically that d =(dm- I)M+ I. This figure shows results for M = 1. Spud-
the minimum number of points required for the predic- ous exponents are labeled with squares while dynamical ex-
tion algorithm to go as something like 20d, where d is the ponents are labeled with ,rs.
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TABLE I. Lyapunov exponents for the Hinon attractor M = 1. and the number of data points is 10000.

2 1=1 0.412 X2 -- 1.70
3 11=0.412 X=-0.662' X3=-1.72
4 11=0.408 X2=-0.281 13= -0.655 X4-1.88
5 11=0.408 4-=-0.0824 X;3=0.305 X=-0.622 X.s= -1.55
6 11-0.407 X-0.128 X = -0.144 4= -0.321 xs=-0.581

=-1.56 / -

7 X1=0.437 ;L2=0.323 X3 -0.0767 A4=-0.190 X5=-0.335
4=-0.604 ;L7= - 1.54

8 X=0.602 12=0.382 X3 = -0.0509 )L4= -0.118 Is = -0.203
A4= -0.332 17= -0.642 Xj= - 1.54

9 11=0.677 X2=0.377 X3=0.0896 X=-0.0390 Is =-0.124
A4=-0.203 ),=-0.324 X = -0.652 X,= - 1.58

Accepted vilues of X ., =0.418 X2= - 1.62

physical system in question. However, it is relatively sampling rate r=0.03, which is approximately -L of the
easy to determine which of the d, exponents govern the autocorrelation time. Thus we use every Runge-Kutta
dynamics of the system and which are spurious. We as- data point as our experimental data set. We allowed dm
sume that one has successfully determined the minimum to range between 2 and 9 for M = 1 and 2. The results of
embedding dimension of the attractor by the method we our numerical experiments are shown in Fig. 7 and Table
presented in Sec. II (or any other reliable method at the II.
reader's disposal). Examination of Fig. 5 indicates that For all cases M I and 2, we are able to accurately
most of the spurious exponents are negative. These nega- determine both the positive and the zero Lyapunov ex-
tive exponents are necessary to contract the d- ponent. The accepted value of X, is 1.50. The average of
dimensional phase space onto the attractor whose dimen- the calculated values of X, for d, ? 5 in the M = I case is
sion is dA <d. The one positive spurious exponent ap- X1=1.45, which is an error of only 3%. As with the
pears at d., = 7 for the M = 1 case. We know from Fig. I H6non example, we found better results for the M=2
that the dynamics of the H1non attractor can be embed- case.
ded in two dimensions. Hence we conclude that an ex- The question of a zero Lyapunov exponent requires
ponent that exist only for d,, > 7 must be spurious. The special consideration. Any dynamical system that is
origin of this spurious Pmitive exponent is disc'issed by represented by an ODE will contain a zero Lyapunov ex-
Eckmann et aL8 It is believed it will stabilize at a vai,: ponent. As can be seen from Fig. 7 and Table II, one of
of 2X I. the Lyapunov exponents calculated from the experimen-

We have averaged the calculated values of X, for the tal data set is very small (as much as two orders of magni-
M = c case over the range d, =2-6. We discarded the tude) cointared to X1. We also notice that this exponent
values of X, for d_ >7 since they have obviously been al- is very stabic and very persistent. It exists for M = 1 and
tered by the spurious Lyapunov exponent generated at 2 over the entti* range of d,. Given this behavior and
d,=7. We find that the average value is X,=0.409,
which differs from the accepted value of 0.418 by only 1.0 .
2%. For the M=2 case we found similar results. After
averaging we find that X, =0.420. In conclusion, we state
that by comparing the M = 1 and 2 cases we feel that the
code successfully determined the positive Lyapunov ex- o.5
ponent associated with the H~non attractor. o

We now turn our attention to the second dynamical
system we wish to analyze, the Lorenz system of ODE's .
given by Eqs. (8). The data set used for our numerical ex- S
periments consisted of N=20000 entries and was gen- . 0
crated by integrating Eqs. (8) forward in time using a sim-
ple fourth-order Runge-Kutta routine with a fixed time
step. We chose to record the x I (t) variable, although ei-
ther the x2(t) or x 3(t) variable would do as well. Figure -o.. I I I
6 is a graph of the autocorrelation function. The first 0 10 20 30 40 50
minimum is at n -12 where n is the number of Runge- Number of Runge-Kutta time steps

Kutta time steps of length 0.03. The time associated with FIG. 6. Autocorrelation function for x,(t), the Lorenz sys-
this first minimum is approximately t,-0.36. We use a tern from 20000 data points.
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10. 1.. B. Woif-Swift-Swnmey.Vastao method

A second technique that we have investigated to deterv
. mine Lyapunov exponents from time series is due to

s 0 -Wolf, Swift, Swinney, and Vastano (WSSV). 9 This p
presents two algorithms, one for determining the fug

Lyapunov spectrum from a known set of dynamical equa-
. -e-- -  _ tions, and one for determining only the largest positive

Sexponent if one has available ordy a time series from
dynamical system. Since the paper includes the source
codes for the two algorithms, we copied and used them

-20 - directly. The WSSV code for time series analysis can
only determine the largest positive exponent. We have
up to now chosen to use only one Lyapunov exponent as

- , . a constraint to the nonlinear fitting method, and so this .,

0 10 program proves sufficient for our needs. Given the .#current difficulty of accurately determining other ex- 1
FIG. 7. The results of applying the Ecknann et a. method ponents from a time series of data, we restrict the con-

of calculating Lyapunov exponents to a Lorenz data set. The straints to one Lyapunov exponent. In addition to these
results shown are for M = 1. For this dynamical system there considerations, the WSSV code is exceptionally easy to ,
are three dynamical exponents at X = !.50, Xj=0.0, ad use, and requires relatively minimal amounts of data. , Aam .ts The WSSV code for time series works in a mannersomewhat similar to other techniques which attempt to

approximate in some way the local tangent space about a
fiducial orbit. In this case, the code initially constructs

the prevalence of ODE's as dynamical systems, we feel the time-delhy reconstructed coordinates for the system
confident in predicting a zero Lyapunov exponent. in the usual manner, taking the parameters for the recon-

Of course, we have the luxury here of knowing that our struction as input to the program. The calculation of the
data set came from an ODE. This type of knowledge Lyapunov exponent then begins by finding the nearest
concerning the origin of a data set is typically unavail- neighbor in the reconstructed phase space to the first
able. Thus we must use our best judgment and live with point of, the orbit, where "nearest" is measured using the
the fact that we cannot know for certain whether a usual Euclidean metric. Once this point is found, the
Lyapunov exponent generated by the Eckmann et al. magnitude of the difference vector between the two
method should be interpreted as zero or just very small. points is recorded. The algorithm then proceeds by
Our recommendation is that one compare the suspected evolving the fiducial point along its trajectory, and the
zero exponent to the smallest nonspurious positive neighboring point along its trajectory, a given number of
Lyapunov exponent generated by the code. If the steps of the time series. The magnitude of the final sepa-
suspected exponent is as persistent, as stable, and more ration between the two points is then determined, and the
than a factor of 25 smaller than the smallest positive ex- contribution to the Lyapunov exponent is then simply
ponent, we recommend that the suspected exponent be given as the logarithm of the final separation divided by
assigned the value zero. the initial separation, divided by the time interval of evo-

TABLE II. Lyapunov exponents for the Lorenz attractor M 1 1, and the number of data points is

20000.

d, X

2 X1=9.54 X2= -6.30
3 X1=2.42 X2=-- 1.27 X3 -- 26.5
4 X, = 1.68 X,2= -0.308 X,= - 11.7 X,= -25 9
5 X, = 1.47 X = 0.0619 X3= -6.84 ) 4= - 12.7 45= -26.5
6 X = 1.40 X2 = 0.0471 L3.= -4.50 X4= -8.12 X,= - 13.0

X6=-26.1

7 X =1.50 L2=0.0141 X =- 3.49 --- 5.81 X=-8.69
4==-13.1 X7 =-24.8

8 X, 1.40 X2 = -0. 105 X3= - 1.96 X=-4.02 X5 = -5.62

A,= -8,24 ;.7
= - 13.1 X= -25.5

9 X = 1.48 X2= -0.109 4 3= - 1.06 ,=-2.88 ;.5= -3.68
4= -5.63 4 7= -7.70 Xg = - 12.6 X9= -25.3

Accepted values of X X, = 1.50 X2=0.00 X-22.5
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to B. Wolf-Swift-Swhauey.Vmtm method

A second technique that we have investigated to deter.
'" k: . , , mine Lyapunov exponents from time series is due to,,0 . Wolf, Swift, Swinney, and Vastano (WSSV). 39 

This pape.ul

presents two algorithms, one for determining the fuR
Lyapunov spectrum from a known set of dynamical equa.
tions, and one for determining only the largest positi

, -exponent if one has available only a time series from
dynamical system. Since the paper includes the source
codes for the two algorithms, we copied and used them

-20 - directly. The WSSV code for time series analysis can r
only determine the largest positive exponent. We have
up to now chosen to use only one Lyapunov exponent as

- .... .... .... , ,,, , ,a constraint to the nonlinear fitting method, and so this "
o 2 4, 6 8 10 program proves sufficient for our needs. Given the

current difficulty of accurately determining other ex-
FIG. 7. The results of applying the Eckiann et a!. method ponents from a time series of data, we restrict the con-

of calculating Lyapunov exponents to a Lorenz dat se. T straints to one Lyapunov exponent. In addition to these P

results shown are for M = I. For this dynamical system there considerations, the WSSV code is exceptionally easy to
are three dynamical exponents at X1=1.50, X=0.0, and use, and requires relatively minimal amounts of data.

322.5. The WSSV code for time series works in a manner "-
somewhat similar to other techniques which attempt to
approximate in some way the local tangent space about a
fiducial orbit. In this case, the code initially constructs

the prevalence of ODE's as dynamical systems, we feel the time-delay reconstructed coordinates for the system
confident in predicting a zero Lyapunov exponent. in the usual manner, taking the parameters for the recon-

Of course, we have the luxury here of knowing that our struction as input to the program. The calculation of the
data set came from an ODE. This type of knowledge Lyapunov exponent then begins by finding the nearest
concerning the origin of a data set is typically unavail- neighbor in the reconstructed phase space to the first
able. Thus we must use our best judgment and live with point ofthe orbit, where "nearest" is measured using the
the fact that we cannot know for certain whether a usual Euclidean metric. Once this point is found, the
Lyapunov exponent generated by the Eckmann et al. magnitude of the difference vector between the two
method should be interpreted as zero or just very small. points is recorded. The algorithm then proceeds by
Our recommendation is that one compare the suspected evolving the fiducial point along its trajectory, and the
zero exponent to the smallest nonspurious positive neighboring point along its trajectory, a given number of
Lyapunov exponent generated by the code. If the steps of the time series. The magnitude of the final sepa-
suspected exponent is as persistent, as stable, and more ration between the two points is then determined, and the
than a factor of 25 smaller than the smallest positive ex- contribution to the Lyapunov exponent is then simply
ponent, we recommend that the suspected.exponent be given as the logarithm of the final separation divided by
assigned the value zero. the initial separation, divided by the time interval of evo-

TABLE II. Lyapunov exponents for the Lorenz attractor M 1, and the number of data points is

20000.

d, X

2 1 =9.54 2
= -6.30

3 X 1=2.42 X2 = - 1.27 X3 = -26.5
4 .=.68 2 =-0.308 X,= - 11.7 A.= -25.9t

=i.47 X2 =0.0619 X3= -6.84 X4= - 12.7 15= -26.5 '

6 Xr=1.40 X=0.0471 A3=-4.50 X4= -8.12 X=- 13.0
X6=-26.1
X=1.50 X2=0.0141 X3= -3.49 X=-5.81 A.3= -8.69

1=-13.1 X7.=-24.8
8 X = 1.40 X2= -0.105 X3= -- 1.96 X4 -4.02 X5 = -5.62

4=-8,24 X7=-13.1 = -25.5
9 X = 1.48 X2= -0,109 A.3= - 1.06 )L= -2.88 X = -3.68

X6= -5.63 1 7= -7.70 As= - 12.6 X= -25,3

Accepted values of X X,= 1.50 X2=0.00 3=--22.5
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. . . . I 'B. Wol-Swft-Swimey.Vaitamcmehod

A Eecond technique that we have investigated to deter.
".__.____..mine Lyapunov exponents from time series is due to

., 0 > ... b Wolf, Swift, Swinney, and Vastano (WSSV). 39 This pa
G presents two algorithms, one for determining the ful!
-Lyapunov spectrum from a known set of dynamical equa.

_0 - - -tions, and one for determining only the largest positi
p . - exponent if one has available only a time series from

dynamical system. Since the paper includes the source
codes for the two algorithms, we copied and used them

-20 directly. The WSSV code for time series analysis can
only determine the largest positive exponent. We have
up to now chosen to use only one Lyapunov exponent as

-30 ... ... . ,,, a constraint to the nonlinear fitting method, and so this
0 2 4 , 6 8 10 program proves suffcient for our needs. Given the-current difficulty of accurately determining other ex-

FIG. 7. The results of applying the Eckmann et al. method ponents from a time series of data, we restrict the con-

of calculating Lyapunov exponents to a Lorenz datast. T straints to one Lyapunov exponent. In addition to t .ese ..
results shown are for M - 1. For this dynamical system there considerations, the WSSV code is exceptionally easl to '
ar three ,,'-- "

' exponents at ,=150, X2=0.0, and use, and requires relatively minimal amounts of data.
The WSSV code for time series works in a manner *

.

somewhat similar to other techniques which attempt to
approximate in some way the local tangent space about a
fiducial orbit. In this :ase, the code initially constructs

.,e r ' dynamical qystems, we feel the time-delay reconstructed coordinates for the system
• on.. 4i z,_- Lyapunov exponent. in the usual manner, taking the parameters for the recoh-

Of nave th.- luxury here of knowing that our struction as input to the program. The calculation of the
data set came from an ODE. This type of knowledge Lyapunov exponent then begins by finding the nearest
concerning the origin of a data set is typically unavail- neighbor in the reconstructed phase space to the first
able. Thus we must use our best judgment and live with point of.the orbit, whe. "nearest" is measured using the
the fact that we cannot know for certain whether a usual Euclidean metric. Once this point is found, the
Lyapunov exponent generated by the Eckmann et a!. magnitude of the difference vector between the two
method should be interpreted as zero or just very small. points is recorded. The algorithm then proceeds by
Our recommendation is that one compare the suspected evolving the fiducial point along its trajectory, and the
zero exponent to the smallest nonspurious positive neighboring point along its trajectory, a given number of
Lyapunov exponent generated by the code. If the steps of the time series. The magnitude of the final sepa-
suspected exponent is as persistent, as stable, and more ration between the two points is then determined, and the
than a factor of 25 smaller than the smallest positive ex- contribution to the Lyapunov exponent is then simply
ponent, we recommend that the suspected exponent be. given as the logarithm of the final separation divided by
assigned the value zero. the initial separation, divided by the time interval of evo-

TABLE II. Lyapunov exponents for the Lorenz attractor M = 1, and the number of data points is
20000.

d,

2 X1=9.54 X2 -- 6.30
3 X1=2.42 X2= -- 1.27 X3

= -26.5
4 X, = 1.68 X2= -0.308 -k3 =- 11.7 X=-25.9
5 X, = 1. 47 .1. =0.06!9 3-6.4 X4= - 12.7 X3= -26.5
6 X, = 1.40 X;=0.0 47 1 X3= -4.50 X4= -8.12 X=-13.0 : .

X=-26.1
7 X = 1.50 Xz=0.0141 3 -3.49 14= -5.81 X=-8.69 ,.

X=-13.1 X7= -24.8
8 X, = I.40 X2= -0. 105 X3= - 1.96 A,= -4.02 X3 -5.62

A,=-8,24 X7=---13.1 = -25.5
9 t = 1.48 X2= -0. 109 X3= - 1.06 X.=-2.88 X=-3.68

X6= -5.63 X7 -7.70 A,= - 12.6 X9= -25.3

Accepted values of X X, = 1.50 X2=0.00 3=3-22.5
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lution.. These contributions are then averaged over the tractor , a hence there are more nearby neighbors to
length of the time serie. choose from when replacements are necessary, making

This simple scheme works to provide the largest this process more accurate.
Lyapunov exponent because, given arbitrary initial condi- The embedding dimension parameter d is the dimen-
tions for the two neighbors and an appropriately long sion of the time-delay reconstructed vectors y(n), and is
evolution time, the exponential growth due to the largest determined as in Sec. II. As discussed there, the dimen-
positive exponent dominates the overall behavior of the sion of the embedding space must be sufficiently large to
difference vectors, so that to good accuracy the net ensure the none of the dynamical information about the
change in the magnitude of the two vectoN' reflects al- attractor is lost; however, needlessly large values of the
most solely this rate of growth, Note that a technical embedding dimension results in greatly increased compu-
problem exists here, in that the Lyapunov exponent is tation time for the Lyapunov calculation and also in-
defined only in terms of the linearized equations of creased sensitivity to noise. For the example systems that
motion about the fiducial trajectory, and the exponential we have investigated using this method, we have chosen
divergence of neighboring trajectories can rapidly drive the embedding dimension to be the next highest integer
them out of the linear regime. In the WSSV code, this dimension to the (known) fractal dimension, although for
problem is addressed in a straightforward manner; i.e., experimental data, where one is not sure of the fractal di-
when the distance between the neighbors becomes too mension, one may often feel safer to choose a larger
large, the algorithm abandons this point and searches for value.
a new neighbor. A suitable new neighbor is chosen on The second variable that is necessary for the time-delay
the basis of two criteria: first, the point must again be as reconstruction in the program is the actual time delay
close to the fiducial trajectory point as possible, and value T'. This variable, as discussed in Sec. II, gives the'-.-
second, the orientation of the abandoned differeice vec- time separation of the components of the d vectors in
tor must be preserved as nearly as possible. The process terms of the number of iterates of the time series, and can
of chc,.osing a new neighbor using these criteria is thtls be thought of as being chosen to make the d components
approximately equivalent to rescaling the difference vec- as "orthogonal" as possible. For dynamical time series
tor to a much smaller size. In practical terms there is a derived from a mapping, as for the Hinon system, this
I "ade-off between choosing points which are very close to value can be chosen to be 1, since each iterate generally
tue fiducial point and points whose difference vectors lie represents one entire "orbit" on the attractor of the flow
nearly along the ray defined by the abandoned difference that the mapping is derived from. For continuous
vector. This pioblem is handled internally in the code by phase-space flows, as for the Lorenz system, one can
a multiste- s"rch algorithm. Once a suitable new neigh- often Use the rule of thumb given by drd = 1, where d is
bor is determined, the new difference vector is then the embedding dimension and rd is here given as the frac-
evolved until it too becures too large, and then the pro- tion of the orbital period on the attractor, which must
cess is repeated. then be expressed in time series steps. Another more so-

Because this numerical procedure is relatively straight- phisticated method is to take rd as roughly the first zero
forward, there are actually few variables necessary as in- of the autocorrelation function for the time series. The
put to the algorithm, and hence the program is such choice of method for determining the time delay is not
easier to us,- than other Lyapunov exponent algorithms. crucial, however, since the reconstructed dynamics is
There are seven basic variables which must be set to per- generally not strongly dependent on the exact value as
form an analysis of - .ata set, :aost of which are deter- long as it is within a reasonable range of the correct
mined when one calculates the embedding dimension as value.
in Sec. II. The first four variables, which are related to The fourth variable T, is the time between successive
the time-delay reconstruction, are the number of points measurements in the time series, or rather the inverse of
in the data set (N), the embedding dimension d, recon- the sampling rate. This value is not actually a variable,
struction time delay -d, and the sampling rate for the but rather an additional piece of information that must
data T,. The first of these variables N is usually fixed be supplied with any time series, and is used in the algo-
when an experimental time series is being analyzed, al- rithm to rescale thc Lyapunov exponents by setting the
though some criterion for the minimum number of points time scale for the rate of divergence of the trajectories.
necessary for a good estimate of the Lyapunov exponent Although one may have no control over the sampling
can be given. Wolf, Swift, Swinney, and Vastano give a :te for an arbitrary set, for systems where one does have
gcricru i use 'or the ..mu. numbe dtr ointS a dit con 1. this. paantr is ar ;s nrtsnt isne. and can
least 10 d, although this value can depend on the topology greatly affect the qurlity of data. Many of the aspects of
of the attractor aud the relative magnitudes of the problems that can arise are from improper sampling rates
Lyapunov exponents. Our experience has shown that at are discussed by Mh.yer-Kress.4°

least twice this number of points is usually necessary for Two of the input variables to the algorithm are con-
two significant figures of accuracy, and greater accu.icy cerned with setting length scales for the reconstructed
can require much longer time series. It should be noted dynamics. The parameter S., controls the maximum
that in terms of the algorithm, longer time series are re- distance that the algorithm will look for neighbors when
quired not just to improve the convergence by providing it attempts replacement. Since we take a rough value for
more contributions to the Lyapunov value; longer time the limit of the validity of the linear approximation to be
se, -s . 'so provide a higher density of points on the at- about 1% of the macroscale of the attractor, the value of
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Sn should be taken at somewhat less than this value, the evolution times, and a value within this stable
Of course, making this parameter smaller will increase is usually an accurate choice.

- accuracy; however, the density of points on the attractor Using the above general guidelines, the Wolf code was
determines how small it can be, and making S. too used to determine the Lyapunov exponents of two sample
small also has the unfortunate effect of greatly increasing systems for which the exponents are already known: the
the computation time of the algocithm. It is instructive Hinon map and the Lorenz system. In both cases, all of
to do some experimentation uith the effect of this vari- the parameters could be chosen ahead of time with good
able when analyzing a data set, however, we have found confidence, with the exception of the evolution time (T V"
that the 1% rule is usually a good guess. The second For this parameter, a series of runs with differing Te l
scale variable is S,,in, which sets the minimum distance values were done, as a check of the stability of- the
that the algorithm will look for neighbors during replace- Lyapunov value with different evolution times, and -to
mert. The purpose of this parameter is to reduce the demonstrate how this may be done with other parameters
effects of very small levels of noise by eliminating the for which good guesses are not available a priori.
choice of neighbors which are so close that they are For the Hinon map (whose dimension is known to be
within the scale of distance that the noise defines. Since 1.26), we chose d = 2, and N = 2000, although about 1000 .
we deal with "clean" data sets throughout the discussion (-- 3 V) would probably suffice. Since the system is
in this paper, the value of Sin was set quite low. For ac- defined by a mapping, we choose rd =1 (this is verified
tual experimental data corrupted by noise, a good deal of using the autocorrelation calculation, Fig. 8), and like-
experimentation with this variable is probably necessary, wise t, = 1. Since the largest scale of the map is about 4, .
as it is difficult to estimate the effective scale that the we chose Smx to be 0.25 to 0.05. Also, since the data are
noise will appear on. It should be noted that this param- generated numerically, the only noise is from machine er-
eter is only effective at reducing the effects of very small ror, so we chose Smin to be a conservative 10- 5. Note
magnitudes of noise, as we have found that S,. n can usu- that some experimentation was conducted with these
ally be not much larger than about 1% of S., or the al- values, but that the result of the calculation showed X,
gorithm has difficulty finding sufficient numbers of neigh- was not greatly affected for parameter values within
bors within the linear regime for replacement. reasonable limits of the ones given, although the run

The last input parameter to the algo.thm is TE, which times could be considerably affected for S., too small.
gives the evolution time (in time series steps) that a given For the remaining parameter TE we present a graph of
pair of neighbors are allowed to evolve before replace- the value of the largest exponent X versus the value of TE
ment. The value of this variable can greatly effect the ac- (Fig. 9)., Note that there is a plateau in the value of X at
curacy of the calculation of the Lyapunov exponent, for a about 0.624. for values of the parameter TE out to about
number of reasons. If the evolution time is too short, the 5, after which it drops off sharply. Note that even
differenc: vector between the two neighboring trajec- though the characteristic time for his map is 1, we see II

tories may not have sufficient time to evolve with the dy- that X, is stable to a reasonably large variation in Tr.
namics on the attractor, and the frequent replacement The value we obtain for X, is within about 3% of the
process can introduce considerable inaccuracies. If the value quoted by Wolf et al.
evolution time is too long, the neighboring points can For the second example, the Loienz system, a data set
often evolve to distances which are greater than the was generated by integrating the dynimical equations
linearized regime, and so these contributions are also with a Runge-Kiica integrator, using a time step [=1
inaccurite. Additionally, for attractors which may have (sampling rate)] of about 0.03 sec. Since the characteris-
a multilobed structure, such as the Lorenz attractor,

enormous errors can be introduced if the evolution time 1
is sufficiently long to allow two neighboring points to
eventually evnive along the two separate lobes.

To choose TE for a time series produced by a map, one
or two iterations of the map is usually a good value, as
was the case for the Hinon system. For a flow, some ex- o 0.5
perimentation must be done. A good general -ule is that
the evolution time for a flow should be on the order of 1 ,. A

to 1+ orbital periods on the attractor, although this again 0

.....ar! .......... h ,azitaiuu of ilic Lyapunov ex- o.0
ponents. When one only has a time series to work with, '
an orbital period for the system can be determined by
taking a power spectrum of the time series and picking
the dominant feature, if any. Once a rough estimate of

what the evolution time should be is obtained, it is -0 5 L

strongly advised to calculate the Lyapunov value for a 0 1 2 3 4 5

range of evolution times around the rough value. The Number of Iterations

computed values of the Lyapunov exponent versus the FIG. 8. Autocorrelation function for x,(n) in the Hinon sys-
evolution time will usually remain flat for some range of tem from 2000 data points.
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0.65 regime is about 2.22, which is within 2.7% of the valueU)

2.16 quoted by Wolf et al.
It is worth noting that, because of the double-lobed

X structure of the Lorenz attractor, the program can often
Wbe "fooled" by choosing two nearby initial orbits which
> 0.55 wind up on different lobes of the attractor, thereby giving

erroneous contributions to the averaged exponent. In
this sense, the Lorenz system is a somewhat difficult case
for study using the fixed-time-evolution program, and

045 hence the results can be somewhat less accurate than
would be expected.

Calculations of the largest Lyapunov exponent were
10.40 carried out for other systems beside the two examples
4 -above, and in all cases the worst errors were on the order

0.35 . ....0 6.00 ...0....0...0....0. 5%, with most values being about 1-2% of the expectedexponent. We conclude that, at least for the largest posi-
1 0 . tive exponent, the above code is relatively simple to use

FIG. 9. X vs TE for the WSSV method in the H~non map. and provides reliable and reasonably accurate results.
Although we have not tested them yet, more elaborate

tic time for the Lorenz attractor is about 0.5 sec, this versions of the code promise greater accuracy, as well as

gives about 17 points per orbit on the attractor. The di- the calculation of the rest of the positive Lyapunov ex-,,

mension of the attractor is known to be about 2.06, and ponents. The one drawback of the method is that it does

an embedding dimension of d = 3 was chosen. The not allow for calculation of the negative exponents of the

minimum number of data points required, as estimated spectrum, although current research suggests that it may

by our rule of thumb, is about 5000, so we close a set of be possible to capture at least the largest negative ex-

10000 points (=N). The autocorrelation calculation ponent using time reversal of the data sequence.

(Fig. 6) suggests a value of t, = 13, and rd is 0.03. Since Some experimentation was done with calculating the
largest Lyapunov exponent for a few other systems, and

the maximum scale of the Lorenz attractor is about 40, in all cases the worst errors were on the order of 4-5 %,
S., was chosen to be about 0.4 or 0.5, and Smin was with most values being within 1-2 % of the expected ex-
chosen, by the same arguments as for the H~non system, ponent. We can conclude from these studies that the
to be about 1' - 5. Ac for the previous example, we calcu- WSSV code provides a very simple and reasonably accu-
lated the largest Lyapunov exponent for a range of the rate way of determining the largest Lyapunov e" ponent,
last parameter TE and these results are shown in Fig. 10. and does not, require the excessive amounts of data that

From the graph, one notes that 41 settles into a some- soe ot e the grt ssemond or applica-
whatfla reionby vaue f T ofabot 1 orso one some of the other algorithms seem to need. For applica-

what flat region by a value of TE of about 16 or so (one tions where only the dominant behavior of the spreading
orbital period) and remains roughly so until about 30 of nearby trajectories is needed, and where it is not neces-
(two Jf orbital periods). There is still a considerable varia- sary to know the remaining Lyapunov exponents, this al-
tion in the values of X along this region, which very likely gorithm can prove very useful.
indicates that the convergence is still not very good and a
longer data set is necessary. The average value from this C. Lyapunoy exponents from the map F(ya)

~4,00 Whatever method one chooses to use for determining
0) the Lyapunov exponents from the data, and we have ex-
9 5o amined only two possible methods proposed in the litera-

× ture, we must now establish a way to express these same
W quantities in terms of our map F(y,a). A direct tran-
> 3.oo scription of the methods of Shimada and Nagashima,S

0 Benettin, Froeschle, and Scheidecker,' 6 or others would
056 lead to a correct prescription, but not one which is easily
co used in the optimization or fitting we ish to do tsing the

2x.00- function F(y,a). The point is that one can achieve better

in results in this fitting if one has available a useful analytic.0 . formula for the derivatives of the constraints with respect
".5 to the parameters a. We will choose then a slightly

different way of expressing the Lyapunov exponents in
0.00 .. 0............. 0 terms of the map F(y,a) than appears in the literature.

0.00 10.00 30 40 Ours may be a useful technique in itself.Lyapunov exponents characterize the way in which

FIG. 10. X vs FE for the WSSV method in the Lorenz sys- neighboring points, small areas, or small volumes near
tem. the orbit of interest evolve under the mapping. To find
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them one linearizes the mapping y(n +1) =F(y(n),a) [tr{MK)]-tr(M ),
Iround a given orbit y(l),y(2),..., y(N). Small devia-

.. ,tions from this orbit, call them 6y(n), evolve as where
8y(n + 1)M(y(n))Sy(n) '2~y .=Mr-, ,

where . ..1 ;0 4-. .. XM(y(2K-l))... M(y(2))M(y(l)) ,.?
. '' ':, " !' "'t ,- "

"M(y) .,.behaves as exp[rK(X1 +X2 )1 for large K. So we can findoy!)]k .F . : ! .,a ). the sum of X +X2 by

is evaluated along the orbit of interest. The Lyapunov Xi+X2= I n[[tr(M)]-tr(MK)J
exmonents are found from th. eigenvalues of the matrix
M^(y()) for large K. It is straightforward to construct expressions
"M(y())M(y(K))M(y(K- M)"."M(y()), for the sum of exponents up to order m by recognizing

the terms in the above logarithms as those of an expan- :
which has information about. the orbit generated by sion of the trace of the mth power the matrix

(y,a) beginning at y(1). Indeed, calling the Lyapunov (MX)J-tr(MK),j.,
exponents Xf, i = 1,2, ... , d the eigenvalues of MX(y(1)) In any case, our procedure is now clear. Use whatever
are exp(rKXI) in the limit as K- co. The " in this ex- means available to evaluate the X's from the data. Then :.
pression is the same one we set to unity in Sec. II. For form the indicated logarithms of combinations of traces
the finon system (a map) r is 1, while for the Lorenz sys- of the matrices MK, MIK, etc. as computed from the
tem (an ODE) r=0.03 (cf. the Eckmann method in this parametrized mapping F(y,a). Equating the XI's evalu-
section). ated from the data to the expressions for the k.'s in terms

The familiar method of finding these ki's (Refs. 10, 15, of F(y,a) gives us a set of d constraints. We impose these
and 16) is to apply the matrix MX to an arbitrary vector constraints on our choice of the parameters a in conjunc-
w. Then forming tion with the minimization of our cost function.

Our actual practice restricts attention to the largest
._ In l l() Lyapunov exponent X1 since that is the only one we know

wK I wl(9) how to reliably extract from data. Thus only the trace of
MX is needed in our constraints. It seems to us a matter

yields the largest exponent X, for large K. To find the of some inportance to devise accurate methods to deter-
next largest exponent X2 one applies M K to the elements mine the full spectrum of Lyapunov exponents from data.
of an outer product wt X w2, and calculates the logarithm They would be useful in the program we are engaged in,
of the norm of this vector for large K. This gives the sum and they act as classifiers for nonlinear dynamical sys-
of X and X2. Continuing in this fashion, the full tems with broadband power spectra. In the case of
Lyapunov spectrum may, in principle, be extracted. broadband spectra, sharp lines are not available for clas-

While the expression of the X's as logarithms of the sifying and one must turn to the kind of dynamical in-
norms of various vectors to which MK has been applied is variant we have here.
correct, it presents serious problems in evaluating the
derivatives with respect to the parameters a of the map- IV. INVARIANT DISTRIBUTIONS ON THE ArTRACTOR
ping F(y,a) from which M is formed. So we take a
slightly different approach. The frequency with which orbits y(n) visit regions of

We note that the trace of the matrix MX contains the the phase space Rd defines an invariant distribution func-
information on Lyapunov exponents we desire. Our first tion, p(y), which is formally defined for the mapping
observation is that the expression y(n + I)= F(y(n)) as

d I N
tr(MK)= I exp(rKXr.) p(y)= lim - I 8d(y-Fk(y(l)))= liM PN-(y) (11) y:

allows us to find the largest exponent X, by In a similar fashion, the invariant distribution for a nu- ,
merical data set y(.), n 1, ... Nis givca by

.i=.lnftr(MK)] (10) p(y) _lm - N
N-oK P() lm ,Sd(y-~y(k)). (12)

in the formal limit that K--. co. This expression is much Eckmann and Ruelle'0 discuss the features of p(y) at
more conducive to differentiation with respect to the pa- some length. In particalar, they address the question of
rameters a (recall that M is a function of a) since we have the dependence of p(y) on the initial point y( I). They
to deal with the logarithm of a simple scalar, the trace of state that any two initial points in the basin of attraction
MX, rather than the norm of a vector IIMKwtI as in Eq. will lead to the same p(y). In this sense p(y) is invariant.
(9). For a dynamical system with two attractors it is possible

One can find an expression for the next exponent X2 by for their basins of attraction to be intertwined in a com-
observing that the combination plicated way. Any uncertainty in the initial point y( 1)
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due to noise, machine round off, etc., may effect our abili- trying to model. The second portion of the data set (of
ty to say with certainty the attractor to which a particu- length N') will be used to construct orthonormal func-
lar y(1) will go. Also, in the absence of noise there may tions. These orthonormal functions will be the 0,(y)'s
be particular y( 1 )'s (often, but not exclusively, on a set of that we will use in our expansion of p(y), shown in Eq.
measure zero in Rd) that lead to nongeneric orbits. An (13). To explicitly construct these functions we further
example of this type of nongeneric behavior would be an divide the second portion of tfc data into G groups of
unstable fixed point or periodic orbit in the presence of a length L (N' = LG). Each group is a sample of the invari-
strange attractor. In any event we will assume that noise ant attractor. If L is large enough, each sample is a
levels are low and the only nongeneric orbits are unstable significant look at p(y). Treat each of the G data sets as
and of measure zero in the phase space. In this case, an independent sample of p(y) and form the invariant
once a particular y(I) has moved beyond its transient distribution for the ath sample
stage the frequency with which it visits various portions I
of the attractor is, by definition, p(y). P,(Y) = -I 8d(y - y(k,a)), (14)

The complete invariant density p(y) has too much in- L k =
formation in it for our purposes. (We could not constrain with a= 1,2, ... , G. The data point y(k,a) is the kth
a cost function to reproduce every point on the invariant member of the ath sample. Of course, the mean density
density without an inordinate amount of work.) Any of the G samples is just the total invariant density of the
finite sequence of N points has a finite resolution on the
attractor. That resolution is approximately N - IMA , data set of length N',

which is the order of the mean distance of N points on a p(y)= p(y) (15)
dA-dimensional set. Furthermore, we will never actually '4-

resolve the detailed 6-function resolution implied by Eqs. From the G samples p0(y) we form the following phase-
( 1) and (12).

To handle this matter of finite resolution we introduce space correlation function
a complete orthonormal set of functions b,(y) defined on 1 G
Rd which can serve as a basis set. We then expand p(y) R(z,w)=- I p.(z)pa(w) . (16)
in terms of this basis Ga-

G It can be shown 22' 26 that the normalized eigenfunctions
p(y)= I B,'00(y). (13) of this correlations function are the optimal eigenfunc-

'- I tions for expansion of functions localized on the attrac-
Truncating this expansion at some finite order (11=G) tor. dptimal means that these eigenfunctions provide the
provides a finite-rdsolution representation corresponding best representation in a least-squares sense of the infor-
to whatever information we have on p(y). The mation in p(y) when expressed as a finite series in an
coefficients B, will be the invariants of the dynamical eigenbasis. The label a is to be treated as a sampling in-
process which characterize p(y) within a given basis dex from a set of independent looks at the data each of

(y). After our discussion of how to select the 4 1(y)'s which is to be thought of as selected from a uniform sta-
we will establish how one extracts B,'s both from the tistical distribution of invariant densities. The various
data vectors y(n) and from the parametrized map F(y,a). averages over a then appear quite natural.
Equating the Ba,'s from the data to those from the map The requirement that 0t,(y)'s be an eigenfunction of
will be our final constraints on the cost function C(X, a). R (z, w) leads to

While any complete orthonormal set of functions 0,(y) fddz R (w,z)O,(z) =pOb(w). (17)
would do to determine our B,'s, some are more appealing
than others. For example, Fourier series formed by tak- The O(y)'s are normalized as follows:ing fddw t(w)~t,,(w)6tu,.. (18)

ing0,(y)=e ' *Y, m=(M)Im 2 .... ,M a )  fdw(8

As the number of samples G becomes infinite, the set of
are formally fine. However, since the attractor is occupy- eigenfunctions becomes complete in the usual least-
ing only a small portion of Rd. most of the work per- squares sense. If we insert Eq. (16) into Eq. (17), we see
formed by the Fourier representation of p(y) will be ex- that for finite G, R (w,z) becomes a finite sum of separ-
pended in making p(y) vanish off the attractor. What we able kernels. It is easily .-en that in this cane the eien.
seek are orthonormal functions concentrated on the at- functions 0,(y) must have the form
tractor, so all the work in the expansion of p(y) is expend- G
ed exhibiting structure where the attractor is located. 0(y)= I Clp(y) (19)
This would also result in the need for many fewer BP aC(
than required for Fourier series or other familiar choices
for 0,(y). The eigenfunctions defined in this fashion are localized

An optimal choice using information in the data set is near the attractor, just as we wished. This follows direct-
constructed as follows. 26'27 Take the total data set y(n), ly from Eq. (19) since 4'.,(y) is made of the pa(y)'s which
n = 1,2, ... , and divide it into two portions. The first vanish off the attractor.
portion (of length N) will be treated as the data we are Inserting Eqs. (16) and (19) back into Eq. (17) reduces
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the cigenvalue equation o a finite matrix proble-, The [cf. Eq. (19)].
coefficients Cl are the G vectors which are eigevectors We now have a set of G orthonornnal functions (y)

.,, of the G X G matrix extracted from G samples pa(y) of the invariant distribu.
1 tion. We can use the orthonormality condition, Eq. (18)i
G p; - f ddz pa(z), (20) to project a particular B. out of Eq. (13),

i e.dy(y)OP(y). (25)
, AC--pC " (21) Incidentally this shows the B are invariants of the map-

a (2) ping since they are integrals of 0 with the density p(y)
(cf. Sec. I). If we insert Eqs. (12) and (19) into this expres.

We now turn to the normalization condition Eq. (18). In- sion we get
serting the representation for ,,(y) given by Eq. (19) into 1 G N
Eq. (18), and using the relationship between the CV's and B; GyN

A, given by Eqs. (20) and (21), dictates that the vectors 'a-i k-I 'p(k
Ca obey the following normalization condition:-.

SCP~'(G)'6 *)(22)

" ~ ~Xexp[_ - y(ja)_y(k)12/@]} ""

(Incidentally, this equation also shows that all the eigen- j
values p are positive.) (26) "

Formally, the elements of p,(y) are 8 functions.
Hence, numerically speaking, computation with them is where we have used Eq. (23). Equation (26) has been used
really not possible. We choose to replace 8d(x) by to numerically calculate the B 's from the data.

This should make it clear how one evaluates the B 's
1d()X - e f(x), from the N'=GL data vectors y(k,a) in Rd. The B S

are the G numbers characterizing the invariant density
which, when F5 is small, represents only a small loss of p(y) by its projection on the optimum basis vectors
resolution in calculating p0(y). f. also has the same in- OW(y). Now we wish to see how to evaluate them from
tegral as the 5 function it replaces. To this approxima- our parametrized mapping F(y,a). The G equalities be-
tion tween these two evaluations of B, form our final con-

straints on the minimization of the cost function C(X,a).
(y)- L To determine B from the map F(y)-we suppress the

P k- parameters a for a moment-we return to the definition e
of the invariant density as expressed by Eqs. (I 1) and (12).

and Eq. (20) becomes Call A the projection on 0,(y) of each term in the sum .
1 2 I e1in this equation:

I .....
iAa= - GL Ak(p)= fdd dgy#(y)ad(y-Fk(y(1)))

X exp[-y(k,a)-y(j,[)2/]. (24) =gFk(Y( I))) "  (27)
kJ1 We interpret Ec!. (27) as saying that A k(p) is the projec-

We are now in a position to calculate our optimal tion of 8d(y-F (y())) onto the orthonormal eigenfunc-
eigenfunctions 0,1(y) from the G data sets. Use Eq. (24) tions 0,,(y). Using this interpretation we expand the 8
to numerically calculate the GXG matrix A . Next cal- function in terms of (Y) to get
culate the eigenvalues y and eigenvectors CP of this ma- G
trix, being sure to normalize them according to Eq. (22). Sd(y--Fk(y( I )))= AkQI) (y)•
We can then form the eigenfunctions tb,(y) by using the P-1
normalized CP's and the p,(y)'s [in the form of Eq. (23)] For large N, Eq. (I 1) can now be written as
in Eq. (19). 6 1N1) 41

in Fig. i i we show p1(y) evaluated for the I1non at- P(Y) I -L , A )
tractor from a data set L=750 steps in length. These P_,N-I k I .
data are displayed on a grid of 75 points in each coordi- Comparing this equation to Eq. (13) indicates that
nate direction. The other densities are qualitatively simi-
lar in that they are very spikey. However, the exact posi- 1
tion and size of the spikes varies from one sample to the By =- j A011)
next. The 0t,(y)'s look like the p,(y)'s except that they -1 n
are allowed to be negative is some regions. This is not t
surprising since they are composed of the pa(y)'s and the = N ,(F'(y ))).
weights (given by the CP's) are not required to be positive k-'1
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FIG. 11. First density for the Hinon manp for L =750 and G 5.

From Eq. (19) and the definition of p,,(y) we rewrite this using our smoothed replacement for the 5 functions in
equation as the invariant density.

NL G This is the equation we will use to calculate the BIa's
B,,= 1,1 ' '-F~y 1*) from the map. To implement it we take all N points in

N~-jj -10- CdIa )~kyl the first portion of the data set and iterate them once
through the map FRy,a). When F(y,a) is near the

This expression requires quite high powers of FRy, a) to correct map iterating the data set once will result in
be evaluated, and we cannot be confident that such high points that are still on the attractor. We then evaluate
powers of the parametrized map are numerically accu- the Gaussian, and numerically sum all the contributions
rate. When the map is near the correct or optimum map, between the iterates of the data set and the points in the
then we are accurately reproducing y(k + 1) from y(k) by G samples.
a single application of fly,a). We utilize this to replace We close this section with an observation about the

Fy())in the last formula with F(y(k)). The expres- B ,'s. By combining the definition Eq. (27) with the iden-
sion for B,,'s then becomes iy

B N= 1- 717 C .d y(j,a) F(y(k))) Jd~
I G L fdw8y-F(w))5(WF(yflI

N~~L 1.i. 1 )d/2 we can derive the recursion relation

28)- n jwhic tersi mti i v b

(28 inwihtetastonmti sgvnb
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TW.f dd,(y)0,.cF(y). (29) In effect, we had two free parameters in F(y,a) when
values of X, and Bt were specified.

, n a matrix notation the recursion relation Ak + I= TAk Our final a priori choice was on the values of X7 in the.
leads to an expression for predictor Eq. (3). We took three terms here since we:

- were being quite conservative in how many iterations of'

AYY ( -L refleeting our sense that iterations of F(y,a) could be-

whichis come unreliable, we chose X1=0.8, X 2 =0.1, and:
X 3 =0.1. Once again the X's could be parameters which-.

(ITlpL(A)= (ITL)AI . vary in our constrained minimization. We found that.i
L varying the X's by 20% or so did not qualitatively

Since limL.-.p.(1)-fddyp(y) (y)=Bo, this shows change our results. In the case of the Lorenz attractor -

that the BA arc the components of the eigenvector of T study discussed in Sec. V B we report results for X, =0.5,

with ei-envalue unity and further that all other eigenval- X2 =0.3, and X3 =0.2, and note that the cost function

ues must lie within the unit circle, if the expression, Eq. changes by -20%.

(11), for p(y) converges. By our assumption that the p(y) We chose to simply fix the X's for purposes of this p.-
we observe is unique, we infer that the Wigenvalue unity of per. Clearly, the X's can be varied along with the a's, a, .

T is nondegenerate. We tried to implement this observa- and M 3,. .. ,MP, if one wishes. Ours is a first try with -"

tion about the B to yield a method for numerically the F(y,a) we have chosen in fitting the data and meeting
determining them from Eq. (29) (Refs. 18 and 19), but the invariant constraints. The feasibility of accomplish-
found roundoferror undermined our efforts. )g this seemed daunting enough when we set out. Weexpect to include many more parameters in future work

in this area.
V. OPTIMIZATION OF THE CONSTRAINED One additional important matter deserves note before

COST FUNCTION: PARAMETER DETERMINATION we proceed to the discussion of our numerical results.
The maps F(y,a) as we carry out our search over the pa-

A. Analysis for the Hinon map rameters a have very little ability to reliably fit the given
data for most a. Only when we arrive near a (con-

Our first application of the methods described above is strained) minimum of the cost function can we be very
to data generated by the Hinon map of the plane to itself, confident that our map is reasonable. Until the map is
Data were created by iterating the map from some initial near the 'optimum map points in the data set are quite
condition and discarding the first 50 points of that data often mapped far ud' the attractor. For numerical stabili-
set. Two data sets of x I(n) were created this way. The ty in our search algorithms we need a method to identify
first had N'=3750 points which we divided into five orbits which are leaving the attractor for nonoptimal
groups of 750 points each. These groups were used to values of a and return them to the neighborhood of the
create the densities pa(y), and the phase-space correlation attractor.
function among groups was used to generate the eigen- Maps of the form we have chosen have the feature that
functions. The second data set was then used to select points far off the attractor, as defined by the data set it- -,
samples of length N=750, 1200, and 1752 for our self, are mapped to y=0. There is no reason to expect
analysis. the origin of coordinates to lie on an attractor which has

We first studied the distribution of Euclidian dis- dA <d and is quite sparse in Rd, but we choose to always -

tances among the two vectors y(n)=(x(n),x(n +1)), translate our data set so one of its points is the origin.
n = 1,2, ... , N - I formed from the data set. On the nat- This changes nothing about the signal processing issues
ural scale of the attractor, which is order unity, the we address in. this paper and makes our parameter
minimum distance was always order 10--10- 4. This searches numerically sensible.
led us to choose the parameter a in our maps to be With this translation of the origin, an orbit being gen-
o =5 X 10 - 6 so that each data point, at least for N ? 500, crated by F(y,a), when a is not optimal, which tries to
would have neighbors. We varied a by a factor of 10 or depart significantly from the attractor is sent back to ,
so with no qualitative differences in our results. A y=0, which is now on the attractor. When a is near its
thorough parameter search would vary a in the con- optimal values, this feature is operationally unimportant
strained minimizatinn of the cost f'nction. because the map is tracking the data very accurately. %:

Next we chose to use four parameters a in our set and Our experience indicates that if one is trying to create
took the powers, m 3 and m4 in F(y,a) to be m 3 =4, global maps F(y,a), as we are here, some form of "orbit '

M4=5. We did not further vary these parameters. Our reinjection" will be required to give numerical sense to
choice of four a's rested on our knowledge that we would the whole process of searching parameter space to mini-
be constraining our cost functions by only the largest mize the cost function. The problem becomes more im-
Lyapunov exponent X, and the projection B , of p(y) on portant as d grows, since the attractor of dimension
the eigenfunction 01(y) with the largest eigenvalue. Four d, <d occupies "less and less" of the full volume of the
seem d a minimum reasonable number of parameters, phase space. If one is making "fits" to the data by
and &.nce the work required to search large parameter numerous local or nearly local polynomial maps as in the
sets can become significant, we were content with four. work of FS, the issue raised here is absent. Global maps
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-have an economy of parameters and a potential ease of negative, which indicates the absence of chaos for the
interpretation; local maps appear to have an advantage of parametric map.
calculational speed. We have no overall judgment of a When the X1 constraint is imposed, the parameters a
way to choose between these alternatives, change, but .we regard their specific values as of inciden-

Our results for data from the HEnon map are shown in tal interest here. More important is the observation that
Table I1. The parameter searches were carried out using the rms value of the cost function-the bare measure of
the FORTRAN package NPSOL 41" One of its authors, Gill, the quality of the fit-remains about 0.5% while the
was kind enough to consult with us extensively on its use Lyapunov exponent is now accurate to about 1% or
and on the interpretation of its output. For each value of better. Of course, having moved away from the very best
the number of points in the data set, namely, N=750, point-to-point least-squares tracking of the data, the-ac-
1200, and 1752, we report seven quantities for each of curacy of BI degrades to = 10%. Finally, imposing both
three cases: (1) unconstrained minimization of the cost constraints we achieve 0.5% or so in the rms error for the
function; (2) minimization constrained by X, cost function, highly accurate X1, and somewhat better
(.Xv=0.408); and (3) minimization constrained by both B, values.
X, and B1. In each case we report the value of the cost The message of these calculations is that the procedure
function normalized by the sum of the squares of the Eu- we outlined in this paper is both feasible and highly accu-
clidian lengths over all data vectors, the values of the a's rate. The few scalar numbers, he cost function, X, and
at the minimum cost-function, and the deviations AX, B, do not tell the whole story. One can take the map
and ABI from the values of X d t and B4" determined by with the optimum a's and calculate a new orbit starting
the data. The allowed tolerances on these deviations are from some new phase space point y"'"(1): y"W(1 ),
set in NPSOL by the user. We typically required the rela- y '(2), ... , and compare the new orbit to that generat-
tive magnitudes of AXI to X , and the same for BI to be in ed by the H~non map starting with the same initial point.
the range 0.5-5 %. This is not a limitation of NPSOL, but The data so generated look the same when plotted as a
it seemed quite accurate enough for our purposes. sequence of two vectors, but this temporal representation

A look at Table III reveals a consistent pattern. Un- contains very little useful information, so we do not show
constrained optimization resulted in a cost function with it.
a rms deviation of our predictor from the data of 0.1% or What is more important is the fact that our predictor
smaller. Not surprisingly when we track the data so ac- L
curately, the value of B, comes out quite precise. The y(m +1) = XkFk(y(m-k+l),a) (30)
value of X7.P for this best least-squares fit is remarkably I k-1
bad. Indeed, in our examples this quantity was actually accurately predicts. We have taken numerous points

TABLE III. Optimization results for Hinon map data. C(X,a) is shown with and without invariant constraints.
N-Ifly,a)= I y(/+ Il)g (y, y(j); a))

H-I J-1 L7, ly(k +1)- .xjFJ(y(k -j +l),&)Il

C(X,a)= N
Z y(n).y(n)

X1=0.8 X 2 0.1 X3=0.1
Number of points=750 Xd"'=0.408 BI'=3.4739

C(X,a) a a2  a3  a4  AI. '  AB ' P

Unconstrained 4.016X 10-' 7.5347 1.3289 -0.7041 0.1485 -2.0098 -5.70X 10-3
'AX 4.77X 10-6 6.6855 20.6948 -0.1714 0.0956 1.6X 10- 4  0.223

2.06X 10- 1 0.3422 1.1169 0.3766 -0.05586 4.23X 10-2  0.140

Number of points= 1200 XdP'=0.408 B121t = 3.3RR
C(X,a) a, a2  a3  a4  AXM P ABrnP

Unconstrained 3.41 X 10- 1 7.5217 2.9658 -0.3145 0.07502 -1.676 -9.85X 10- 1
X, 1.1297X 10- ' 8.4520 26.7454 0.2686 0.011 77 -6.32X 10- 4  0.214
;LB, 2.38X 10- 1 6.6093 19.6341 0.08362 -0.01087 - 1.1X 10-4  0.198

Number of points= 1752 X."'*=0.408 Bdt' = 3.369
C(X,a) a1 a2  a3  a4  AX .P _AB1 P

Unconstrained 3.5359X 10- ' 8.4093 6.0546 -0.1497 0.02315 -1.211 -5.80X 10-

A, 1.724X 10- ' 3.1671 9.8576 -0.1120 0.02743 -6.512X10 - 1 0.2605
2.54X 10- ' 5.8314 18.44612 0.1832 -0.028 18 1.005 X 10-

4 0.2466
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from our data set and evolved them forward by use of the with a fixed time step of 0.03. A data set of the x , van-
predictor. We find we are able to track the actual data to able consisting of approximately 20 000 points (after tran-

/'.. the 1% level, seven to ten steps along the orbit all around sients) was generated. We used the same time series for
the attractor. This means that iterates of our optimum all of our numerical runs.
map Fk(y,a) are accurate to km7-10, far beyond -our As we have stated above (cf. Sec. II) we chose an
original safe choice of k =3. The implications of this re- embedding dimension of three. Note that in an actual ex-
markable accuracy for prediction and control of non- perimental situation, a more cautious choice of four
linear chaotic systems are transparent. .. would also be reasonable, although this would have in-

creased our computational requirements by a significant
B. Predletion for the Lt system amount. For the choice of the delay time constant r a

number of different choices could be made. Since the de-
We now turn to the application of our methods to the lay time reconstruction is rather weakly dependent on

Lorenz system, defined by Eq. (8). These equations were this constant, provided one is within certain limits, there :
originally motivated by an attempt to model atmospheric is no unique choice for this variable. Our final choice was
phenomenon using only a few degrees-of-freedom dynam- motivated by the desire to have the reconstructed attrac-
ical system. It was one of the first systems known to ex- tor look most like the original Lorenz attractor. This re-
hibit an attractor of fractal dimension, or a strange at- suits in a time delay of two time steps. For an actual case
tractor, and consequently to connect this with the ap- where one would have no a priori sense of what the at- 2
parent chaotic motion of the resultant dynamics. The tractor looks like, the methods of Sec. II are, of course,
primary concern in modifying our previous techniques recommended. A feel for the required density of points
for use on the Lorenz system will be (i) the jump to a can also be obtained by calculating the minimum -

three-dimensional embedding space, which will require nearest-neighbor distance, and perhaps the frequencies
much longer time series to properly fill out the attractor, that a range of somewhat larger neighbor distances
and (ii) the large difference in the macroscale of the two occur, and comparing this with the "macroscale" of the
attractors, which will require the rescaling of some of the attractor (i.e., the maximum ranges of the coordinates of
variables we have previously defined. We will first, how- an attractor).
ever, give a short review of some of the characteristics of The embedding dimension and delay time comprise the
the Lorenz system. two parameters necessary to correctly reconstruct the dy-

For the parameter values a =16.0, r=45.92, and namics of the systems attractor, and hence is the first step
b=4.0, the Lorenz system possesses a strange attractor in setting up the prediction method. We now turn to the
wiciih hc become one of the classic examples of non- changes necessary in the numerical algorithm when we
linear science. The stxijc t ure consists of two nearly flat consider the Lorenz system.
lobes connected, roughly at a point and angled somewhat The most significant difference between the prediction
with respect to one another. Hence the local dimension models for the- H6non system and for the Lorenz system
of the attractor is essentially two, however, the minimum is that of the size of the time series required for the
embedding space required is three. Note that the motion phase-space reconstruction. Because of the increase in
of the phase-space orbits for the Lorenz systems is con- the dimensionality of the embedding space from two to
tinuous, i.e., a flow, as opposed to that of the Hinon sys- three, the number of phase-space points required to per-
tem which is a mapping. The discretization of the form our procedure increases dramatically. The reasons
Lorenz orbits after phase-space reconstruction, and the for this is clear. Our prediction function F(y,a) requires
density of points along an orbit, is therefore due to the that most points have a significant number of nearby
choice of a sampling rate in the measurement of the time neighbors, i.e., points within dis~ances of a few Va- values
series of data. This sampling rate therefore can be so that a good "mapping" of the local phase space.
thought of as setting a time scale in the reconstructed around a particular region is obtained. Additionally,
picture of the attractor. In turn, this time scale deter- nearby neighbors are important to obtain good numerical
mines the time-delay values for the method of phase- approximations to the gradients of the objective and con-

-space reconstruction used in Sec. II, the evolution times straint functions. Since the number of points required to
for Lyapunov exponent calculations, etc. A discussion of yield a given mean nearest-neighbor distance is consider-
optimal ranges of sampling rates, and the problems which ably larger for a volume than for an area, the number of
occur when sampling rates are too large or small, is given points required to properly fill out the attractor is much
at some length by Mayer-Krp ra c'tical applica- greater for a three-dimensional embedding space. Iii Sec.
tions, of course, one often has no control over the data set II we presented general methods for determining the
one is presented with, although too frequent sampling number of data vectors needed for a givexi embedding di.
can often be remedied by simply throwing away data. mension d. For our particular analysis of the Lorenr at-

To investigate the behavior of our prediction technique tractor reported here, we found that the rinimur num-
on a system with a somewhat larger embedding space, we ber of points that gave reasonable results to be about
chose the Lorenz system as a test case with known pa- 6000. For the numerical experieiits reported in Table
rameters, as was done with the H6non system. An "ex- IV we used data sets with 6000 and with 8000 points.
perimental" time series was generated for the Lorenz One final change in the numerical parameters for thc
equations, Eq. (8), using the parameter values listed prediction code is in the number of matrices that are to
above, by a Runge-Kutta numerical integration scheme be multiplied together to obtain the Lyapunev expon:nt
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TABLE IV. Optimization results for Lorenz attractor data. C(X,a) is shown with and without invariant constraints.
N- L

, .. ,' .'" N-I L' L

. , :.... . . y(k +1)- , xsFJ(y(k- l)a 2

. C(X,a)= k-L N
V, y00i)y(n)

7 . J1 =0.8 X2 =0.1. X 3 =0.
.. ..... .

1
' ' . -

Number of points=600X , 1.51
C(X,a) a a2  a3  a4  AXI""

Unconstrained 2.516 72X 10- ' 57.7977 0.08768 10.2388 -0.04358 -4.100X 10-2

;.3 2.516 72X 10- ' 57.7977 0.09044 10.2388 -0.04335 - 1.000X 10-2

Number of points=8000 11")=1.51
C(X,a) a, al a3  a4

Unconstrained 1.87051XI0 - . 57.7977 0.08589 10.2392 -0.03677 -6.162X10 -2

lLl 1.870 51 X I0 -  57.7976 0.09352 10.2392 -0.03762 -1.101 X 10- 2

X1=0.5 X 2 =0.3 X3=0.2
Number of points=6000 X3.'1.51

C(X,a) aI a2  a3  a4 AXI" P

Unconstrained 3.223 71 X 10- ' 37.1460 0.0201 0.4224 0.00 - 1.0706
;L, 3.223 72X 10- ' 37.1459 0.0581 0.4224 0.02016 - 1.000X 10- 2

Number of points=8000 Xdsta' = 1.51
C(X,a) aI a2  a3  a4 1

Unconstrained 2 .395 9 6 X 10- s 81.1459 0.05589 2.4222 0.00 -0.8307
;L 2.395 97X 10- ' 81.1456 -0.1270 2.4226 9.0809 X 10

- 4  -9.999X 10-
1

from the mapping function. Since each iteration of the In choosing the values of the exponents of the remain-
Hinon map represents a significant evolution of the sys- ing two polyfiomial terms, we recall that we wish to
tem, the multiplication of 500 Jacobian matrices for the elongate the tail of the exponential term in the mapping
Lyapunov calculation represents a good average over the function to make it feel more of the surrounding neigh-
phase space, and results in fairly good accuracy of the bors. However, we do not wish to make these exponents
final value. However, each step of the time series for the so large that we increase the scale well beyond that which
Lorenz system represents much less evolution time for we set by a. After some experimentation, we chose
the dynamics. It was necessary to experiment with the rn =3 and 6 as the two powers for the polynomial terms,
number of matrices required to give good convergence, although this is by no means the only possible choice.
It was found that about 1000 matrix products gave a The second set of parameters of the minimization pro-
reasonably good convergence to the final value, but was cedure which need to be chosen are the X's which appear
still not excessively computationaily intensive, in the definition of the cost function Eq. (4). These

To complete the formulation of the prediction model coefficients weight the different iterates of the map F(y,a)
for the Lorenz data, it is necessary to pick the exact form and essentially determine how many iterates forward we
of the mapping and cost functions that are to be mini- wish the map to accurately reproduce the data. For the
mized. We first discuss the choice of the polynomial Hnon analyis, we chose three X's with values
terms which multiply the exponential in the mapping (0.8,0.1,0.1). Our choice indicates a desire to weight the
function. These terms are defined, as for the Hb4non first forward iterate ,.'e.y 1 il... iin: g ,t. . ....o

analysis, with the intention of giving the exponential and third iterates only minimal importance. This set of
form in the mapping fur -tion a longer "tail" by adding values was chosen primarily becau-. the Hnon system is
multiplicative polynomial terms to it. As for the H1non a mapping, and each iterate represents a large step in
analysis, we chose to use four polynomial terms in the evolution of the original system. On the other hand, the
mapping function, and hence have four variables in the Lorenz system produces a flow in phase space, and the
minimization fit. The first coefficient is, of course, the time step we chose for each iterate of the time series
constant term, and the second again multiplies the linear represents a rather small amount of forward evolution of
term that expresses some dependence of the mapping the system. Thus we choose to weight some of the multi-
function on the Lyapunov exponent. Therefore there pIe iterates of the map more heavily than we did for the
remains to be determincd the powers of the last two poly- Hinon system. We have therefore presented data for the
nornial terms. Lorenz. system with two different sets of values for these
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parameters. In one case we used the original weights of three minima which had almost this same value. A more
the Hinon system (0.8,0.1,0.1). For the other case, we detailed analysis, however, found that after many itera-

- , weighted the multiple iterates more heavily, namely, tions of the search routine two of these minima actually
(0.5,0.3,0.2). Note that we could have easily chosen to evolved into the third. Using better error tolerances in
take more than two multiple iterates of the system. How- NPSoL, it was found that this point actually did have a
ever, for the sake of simplicity and comparison we chose slightly lower minima. It should be noted that even
to use two as for the Hinon system. We also point note though the three minima had cost functions which agreed
that the X's like the a's could be made variables in the very closely, their resulting values for the a's were much
minimization search; we will do that in our-further work different. This is in keping with our observation that,
in this matter. for a large range of parameter values around these mini-

Finally, to determine -a value of the parameter a ma, the cost function was very "fiat" with respect to the
(which sets a characteristic scale of distance over which parameters, i.e., C(X,a) varied very little over a large
the mapping function is influenced by neighbors), it is range of a's. This has the unfortunate effect of causing
necessary to experiment with different values by actually the iteration procedure to proceed very slowly, since the
doing a number of minimization runs. One can, however, minima were very shallow, and a large number of itera-
make an a priori guess by considering two factors. The tions were required to achieve the optimal solution. One
largest value that a can possibly have will certainly be possible conclusion from this is that, if one were interest-
the scale of the linear regime for the system. This is very ed in a purely least-squares fit of the map to the data, any
roughly about 1% of the attractors macroscale, as men- of the parameter sets in this range were nearly as good as
tioned previously. Hence cr should be considerably the optimal solution.
smaller than this value. Additionally, the smallest value After the analysis just described, we performed another
that a can possibly attain is given by the smallest neigh- changing 'he X's changed to (0.5,0.3,0.2). These parame-
bor distance of the data set, and should be at least one to ter values weight the later iterates of the map more heavi-
two orders of magnitude larger than this value. Within ly, and correspond to trying to make the map predict far-
this range, a7 must be chosen with some experimentation. ther into the future. We did not impose the B# con-
We have found that typically, the value of the C(X,a) at straints on the Lorenz system, but used this system to ex-
its minima will be relatively large for larger values of a, plore the variations on the cost fu: tion and the quality
and decreases until a threshold in a is crossed. For of our ability to reproduce the largest Lyapunov ex-
values of a smaller than the threshold value, the minima ponent as we changed the weights Xj in the predictor.
of C(X,a) becomes a great deal less, sometimes by an or- The results of these minimization searches are also
der of magnitude or more. We recommend that a be presented in Table IV; both 6000 and 8000 points on the
chosen somewhat smaller than this threshold value, how- attractor are used in our example. As can be seen, the
ever, not too much smaller as it is still desirable to have cost function for these minima are about I higher than
as much of the surrounding phase space as possible con- for the previous system, and this is to be expected since
tribute to the mapping of each orbital point. For our ex- the later iterates, which must be inherently less accurate,
periments on the Lorenz system we used o- 1L.0X 10-'. now give a much larger contribution to the cost function.

Using the parameter values stated above, a search for In terms of relative fitting error, however, these minima
the minima of Eq. (4) in the parameter space a was con- are still surprisingly low. The final parameter values, al-
ducted using the NPSOL (Ref. 41) package. Since there is though significantly different from the previous system,
no general method known for determining the absolute are still similar enough to give the same general character
minimum of a function using numerical methods, one to the fitting function.
generally proceeds by finding the minima after iteration One noticeable difference between the two different
for each of a large number of initial conditions, while at- values of X's was in the fitting of the map using the
tempting to cover a large representation of the phase Lyapunov constraint. The iteration procedure for the
space. In practice, one will usually find a number of local (0.5,0.3,0.2) system went far more quickly than for the
minima, all of which have "basins of attraction" of vary- (0.8,0.1,0.1) system. This can probably be interpreted in
ing sizes. After a number of runs, one usually will gain terms of the fact that if later iterates of the map are
some intuition as to which regions of the parameter space weighted more heavily, then the parameters result in
evolve to which local minima. When some confidence is more sensitivity of the map to the Lyapunov constraint,
gained that a large region of the parameter space has which usually requires longer ero!-o tims to ricalziIcsi
been -tgatcud, we label ihc minimum with the lowest i.seif for flows.
cost function value the "absolute" minimum. Of course,
generally speaking, one can never be sure that one has VL SUMMARY AND FUTURE TASKS
bound the actual global minimum.

Using the time series for the Lorenz data and the pa- In this paper we have given a set of procedures v'hich
rameter values we have just described, the NPSOL routine one may use to process signals x (n), n = 1,2,..., having
was able to find a number of minima of the cost function a broadband power spectrum. Using numerically gen-
C(X,a). There values ranged over as much as two orders erated data from the H1non map and from the Lorenz
of magnitude. The lowest value of the cost function equations we have also demonstrated explicitly the feasi-
found was in the neighborhood of 1.87X 10- 5, as indicat- bility of our procedures. Processing a signal means that
ed in Table IV. In the preliminary analysis there were from the time series x(n) we do the following.
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Find an integer.dimensional embedding space of time space in which the phase-space reconstruction
lagged d vectors x(n)--.y(n) takes place. We have used the correlation

function Eq. (6), but the, choice of a dimension at which
y(n )-(x(n),x(n +r1),.'. ,x(n + 'd-1)), this stops changing is quite subjective. Establishing an

which fully expose the geometric structure of the attrac- objective criterion would be most useful. Perhaps one of

tor on which the data evolves. The attractor has dimen- the information theoretic criteria developed in statistics

sion d A4 which may be fractional. Choosing the integer for identifying the number of degrees of freedom in a data
d > 2dA + 1 is guaranteed to be sufficient for this purpose, set would provide a tool here.' 2 An objective criterion
but smaller d may oftere work. for establishing the time delays -r, would also be desir-

Find invariants of the evolution y(1),y(2),..., y(N) in able.

R1'-specifically, the Lyapunov exponent spectrum Methods for determining the Lyapunov spectrum
1,X2 .... ,kd and selected optimum moments ;-1, .... ;.d from the data are also quite important. These

B,,B2,.. .,BG, of the invariant density p(y), on the at- are classifiers of the dynamical system and a representa-

tractor. tional map must reproduce them. This is not at all a new

Use these vectors y(n) and invariants to construct a issue as should be clear from the discussions in Sec. III.

parametrized map of Rd to itself y-_+p(y,a), which mini- Our own work in this area, which will be reported in de-

mizes a certain constrained least-squares cost function tail in a subsequent paper, uses local maps of the form of

based on the residual errors of a nonlinear predictor our F(y,a) and fits the parameters a and o to the tangent
map at every time step. The local tangent map

L +M(a(n )),, takes groups of phase-space points -in the
y(m + 1)= y, XkFk(y(m -k + I neighborhood of the orbit point y(n) into groups around ,.

k-1 y(n + 1). The dependence of M on y is sensitive to the
involving iterates Fk of the map. variation of M over the neighborhood of phase-space

The output of the signal processing is the map points. When one has short data sets and thus sparse
F(y,a)-both its form and the parameters a-and the neighborhoods, this dependence on y gives a better ap-
coefficients Xj in the predictor. proximation to M(y) than a local constant matrix.43 The

A map F(y,a) and a predictor which give very small eigenvalues of the product of the local M's along the or-
least-squares residuals when evaluated on the data we call bit yield the X.,
reliable. We have explicitly demonstrated in this paper As should be clear from our discussion of the structure
that even a reliable F(y,a) does not necessarily reproduce of the parametrized map F(y,a), if we remain with our
invariants such as the A and the Bi discussed by us. general'form (which we do not insist on), then properties
The reason is that a least-squares tracking of a data set of g(y,y(n);a) are what we must address. Our choice in
y(n) by a map y(n + 1)= F(y(n),a) does not necessarily this paper has been to use scalar products of y and y(n)
provide a good evaluation of the local tangent space map- in forming g. These are inseriitive to directional infor-
ping Mo=aF(y)/ay j . A map which is reliable and also mation on the attractor. The structure of neighborhoods
gives the correct invariants we call representational. Our of phase-space points near the orbit y(n) is not isotropic,
maps are representational because we constrain the so much of the information in our data may be used in
least-squares minimization by the invariants. A map our present choice of g. Since we want g to provide
which closely tracks data but does not yield the dynami- direction sensitive weights, we might wish to build in
cal invariants misses the essential ingredients which clas- some of the local phase-space structure on the attractor.
sify or identify the dynamical system underlying the data. Some of this information is contained in the correlation

Another way to state our constrained optimization function among points in the neighborhood of the orbit.
procedure is that the cost function to use in determining If an orbit po;nt y(n) has NR neighbors y6(n) within %la-,
the map should not be composed only of the square of the the uorrelation function is
residuals in the predictor. It should also contain terms I N
which measure the residuals in matching the invariants W,,(n)=7I_
determined by the data and the same quantity determined B W6 ]
by the maps. NPSOL and other contemporary optimiza-
tion routines do essentially this by a combination of Following a suggestion of Fukunaga we would use the
Lagrange multiplier and quadratic penalty terms added local correlation matrix in our g(y,y(n);a) by making the
to the least-squares cosi funciioz. This point 01 '  . relaements
gests that we should not focus on the size of C(X,a) d
as our goodness of fit criterion but on C(X,a) IY-Y(n)1 2 " J - [Y-Y(n)],Wt'(n)[Y-y(n)]j
+:F (A. )2+ .(AB7), . In our Tables III and IV we I.J

have reported the values of each of these quantities sepa- and
rately, but the sum as noted should measure the merit of d
our maps. y(n).(y-y(n))--. + y(n),W,7'(n)[y-y(n)]j.

In practice, carrying out our signal processing program ,J I
raises a number of issues of importance in dynamical sys- This now emphasizes directions in phase space along the
tems as well as in the present context. The first of these is attractor where the correlation is larger.
the determination of the dimension d of the embedding In addition to these improvements in our ability to per-
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- form each element of aur xigml pw -xsing program, the other similar attributes. We will report on our tesd.'
application of methut estsblished lt e to laboratory and ideas in this matter in future articles.
field data would be quite productive. The applications
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